NAT10 Modulates Atherosclerosis Progression Mediated by Macrophage Polarization Through Regulating ac4C Modification of TLR9

Back M, Yurdagul AJ, Tabas I, Oorni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. NAT REV CARDIOL. [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review]. 2019. 2019–07–01;16(7):389–406

Buldak L. Cardiovascular diseases-a focus on atherosclerosis, its prophylaxis, complications and recent advancements in therapies. Int J Mol Sci. [Editorial]. 2022;23(9).

Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol. 2018;104(2):114–24.

Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450–62.

Audu CO, Melvin WJ, Joshi AD, Wolf SJ, Moon JY, Davis FM, et al. Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair. Cell Mol Immunol. 2022;19(11):1251–62.

Barrett TJ. Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol. [Journal Article; Research Support, Non-U.S. Gov't; Review]. 2020;40(1):20–33.

Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6(2):137–43.

Stöger JL, Gijbels MJJ, van der Velden S, Manca M, van der Loos CM, Biessen EAL, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8.

Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res. [Comparative Study; Journal Article; Research Support, Non-U.S. Gov't]. 2011;108(8):985–95.

Bartee D, Nance KD, Meier JL. Site-Specific Synthesis of N4-Acetylcytidine in RNA Reveals Physiological Duplex Stabilization. J Am Chem Soc. 2022;144(8):3487–96.

Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872–86.

Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, et al. Human NAT10 Is an ATP-dependent RNA acetyltransferase responsible for N4-Acetylcytidine formation in 18 S Ribosomal RNA (rRNA)*. J Biol Chem. 2014;289(52):35724–30.

Xie L, Zhong X, Cao W, Liu J, Zu X, Chen L. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther - Nucleic Acids. 2023;32:359–68.

Dodson TA, Nieuwoudt S, Morse CN, Pierre V, Liu C, Senyo SE, et al. Ribonucleosides from tRNA in hyperglycemic mammalian cells and diabetic murine cardiac models. Life Sci. 2023;318:121462.

Xu N, Zhuo J, Chen Y, Su R, Chen H, Zhang Z, et al. Downregulation of N4-acetylcytidine modification in myeloid cells attenuates immunotherapy and exacerbates hepatocellular carcinoma progression. Brit J Cancer. 2023.

Li J, Huynh L, Cornwell WD, Tang MS, Simborio H, Huang J, et al. Electronic cigarettes induce mitochondrial DNA damage and trigger TLR9 (toll-like receptor 9)-mediated atherosclerosis. Arterioscler Thromb Vasc Biol. [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't]. 2021;41(2):839–53.

Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, et al. Toll-Like Receptor 9 Plays a Pivotal Role in Angiotensin II-Induced Atherosclerosis. J Am Heart Assoc. [Journal Article; Research Support, Non-U.S. Gov't]. 2019;8(7):e10860.

Ma C, Ouyang Q, Huang Z, Chen X, Lin Y, Hu W, et al. Toll-like receptor 9 inactivation alleviated atherosclerotic progression and inhibited macrophage polarized to M1 phenotype in ApoE-/- mice. Dis Markers. [Journal Article; Research Support, Non-U.S. Gov't]. 2015;2015:909572.

Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, et al. The TLR9 Agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. J Crohns Colitis. [Clinical Trial, Phase II; Journal Article; Randomized Controlled Trial]. 2020;14(4):508–24.

Falk E. Pathogenesis of Atherosclerosis. J Am Coll Cardiol. 2006;47(8):C7-12.

Article  CAS  PubMed  Google Scholar 

Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. IL-4 polarized human macrophage exosomes control cardiometabolic inflammation and diabetes in obesity. Mol Ther. 2022;30(6):2274–97.

Bu T, Li Z, Hou Y, Sun W, Zhang R, Zhao L, et al. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics. [Journal Article; Research Support, Non-U.S. Gov't]. 2021;11(20):9988–10000.

Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. [Journal Article; Research Support, Non-U.S. Gov't]. 2022;12(5):e738.

Jin C, Wang T, Zhang D, Yang P, Zhang C, Peng W, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA. J Exp Clin Canc RES. 2022;41(1):1–345.

Zheng X, Wang Q, Zhou Y, Zhang D, Geng Y, Hu W, et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond). [Journal Article; Research Support, Non-U.S. Gov't]. 2022;42(12):1347–66.

Zhang Z, Zhang Y, Cai Y, Li D, He J, Feng Z, et al. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. Biochimica et Biophysica Acta (BBA) - Mol Cell Res. 2023;1870(7):119521.

Karapetyan L, Luke JJ, Davar D. <p>Toll-Like Receptor 9 Agonists in Cancer</p>. 2020; 13:10039–61.

Huang H, Sun Z, Xu J, Wang L, Zhao J, Li J, et al. Yang-Xin-Shu-Mai granule alleviates atherosclerosis by regulating macrophage polarization via the TLR9/MyD88/NF-κB signaling pathway. J Ethnopharmacol. 2024;318:116868.

Comments (0)

No login
gif