Combined oral contraceptives alter ectonucleotidase and adenosine deaminase activities in peripheral blood cells

Bonan C, Teixeira LA, Nakano AR (2017) [Portuguese] Absorção e metabolização dos hormônios sexuais e sua transformação em tecnologias contraceptivas: percursos do pensamento médico no Brasil. Cien Saude Colet 22:107–116. https://doi.org/10.1590/1413-81232017221.26532016

Article  PubMed  Google Scholar 

Ribeiro CCM, Shimo AKK, de Lopes MHBM, Lamas JLT (2018) Effects of different hormonal contraceptives in women’s blood pressure values. Rev Bras Enferm 71:1453–1459. https://doi.org/10.1590/0034-7167-2017-0317

Article  PubMed  Google Scholar 

Almeida APF, Assis MM (2017) [Portuguese] Efeitos colaterais e alterações fisiológicas relacionadas ao uso contínuo de anticoncepcionais hormonais orais. Rev Eletrôn Atualiza Saúde 5:85–93

Google Scholar 

Golobof A, Kiley J (2016) The Current Status of Oral Contraceptives: Progress and Recent Innovations. Semin Reprod Med 34:145–151. https://doi.org/10.1055/s-0036-1572546

Article  CAS  PubMed  Google Scholar 

Plu-Bureau G, Maitrot-Mantelet L, Hugon-Rodin J, Canonico M (2013) Hormonal contraceptives and venous thromboembolism: An epidemiological update. Best Pract Res Clin Endocrinol Metab 27:25–34. https://doi.org/10.1016/j.beem.2012.11.002

Article  CAS  PubMed  Google Scholar 

Belicová M, Lukàč B, Dvorský J et al (2003) Thromboembolic disease and present oral contraception. Clin Appl Thromb Hemost 9:45–51. https://doi.org/10.1177/107602960300900106

Article  PubMed  Google Scholar 

Martínez F, Ramrez I, Pérez-Campos E et al (2012) Venous and pulmonary thromboembolism and combined hormonal contraceptives. Systematic review and meta-analysis. Eur J Contracept Reprod Health Care 17:7–29. https://doi.org/10.3109/13625187.2011.643836

Article  CAS  PubMed  Google Scholar 

Aslan AN, Süygün H, Sivri S, Keleş T (2016) Low-dose oral contraceptive-induced acute myocardial infarction. Eur J Contracept Reprod Health Care 21:499–501. https://doi.org/10.1080/13625187.2016.1225715

Article  CAS  PubMed  Google Scholar 

Humaish HH, Alasadi A, Aldafae I (2020) Evaluation the relationship between oral contraceptives containing drospirenone with dyslipidemia and risk of cardiovascular diseases among women in Al-Kut City. Indian J Forensic Med Toxicol 14:1920–1926. https://doi.org/10.37506/ijfmt.v14i4.11827

Article  Google Scholar 

Douxfils J, Klipping C, Duijkers I et al (2020) Evaluation of the effect of a new oral contraceptive containing estetrol and drospirenone on hemostasis parameters. Contraception 102:396–402. https://doi.org/10.1016/j.contraception.2020.08.015

Article  CAS  PubMed  Google Scholar 

Gaussem P, Alhenc-Gelas M, Thomas JL et al (2011) Haemostatic effects of a new combined oral contraceptive, nomegestrol acetate/17β-estradiol, compared with those of levonorgestrel/ethinyl estradiol: A double-blind, randomised study. Thromb Haemost 105:560–567. https://doi.org/10.1160/TH10-05-0327

Article  CAS  PubMed  Google Scholar 

Kluft C, Zimmerman Y, Mawet M et al (2017) Reduced hemostatic effects with drospirenone-based oral contraceptives containing estetrol vs. ethinyl estradiol. Contraception 95:140–147. https://doi.org/10.1016/j.contraception.2016.08.018

Article  CAS  PubMed  Google Scholar 

Peeva E, Zouali M (2005) Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett 101:123–143. https://doi.org/10.1016/j.imlet.2005.05.014

Article  CAS  PubMed  Google Scholar 

Taşkşn S, Taşkşn EA, Seval MM et al (2009) Serum levels of adenosine deaminase and pregnancy-related hormones in hyperemesis gravidarum. J Perinat Med 37:32–35. https://doi.org/10.1515/JPM.2009.013

Article  CAS  Google Scholar 

Tostes RC, Nigro D, Fortes ZB, Carvalho MHC (2003) Effects of estrogen on the vascular system. Braz J Med Biol Res 36:1143–1158. https://doi.org/10.1590/S0100-879X2003000900002

Article  CAS  PubMed  Google Scholar 

Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta Mol Cell Res 1783:673–694. https://doi.org/10.1016/j.bbamcr.2008.01.024

Article  CAS  Google Scholar 

Deaglio S, Robson SC (2011) Ectonucleotidases as Regulators of Purinergic Signaling in Thrombosis, Inflammation, and Immunity. Adv Pharmacol 61:301–332. https://doi.org/10.1016/B978-0-12-385526-8.00010-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pochmann D, Böhmer AE, Bruno AN, Sarkis JJF (2005) Ecto-hydrolysis of adenine nucleotides in rat blood platelets are altered by ovariectomy. Platelets 16:334–339. https://doi.org/10.1080/09537100500124400

Article  CAS  PubMed  Google Scholar 

Hebanowska A, Mierzejewska P, Braczko A (2021) Effect of estradiol on enzymes of vascular extracellular nucleotide metabolism. Hormones 20:111–117. https://doi.org/10.1007/s42000-020-00242-6

Article  PubMed  Google Scholar 

Castilhos LG, Doleski PH, Adefegha SA et al (2016) Altered E-NTPDase/E-ADA activities and CD39 expression in platelets of sickle cell anemia patients. Biomed Pharmacother 79:241–246. https://doi.org/10.1016/j.biopha.2016.02.009

Article  CAS  PubMed  Google Scholar 

dos Santos Jaques JA, Becker LV, Souza V, do CG, et al (2013) Activities of enzymes that hydrolyze adenine nucleotides in lymphocytes from patients with rheumatoid arthritis. Cell Biochem Funct 31:395–399. https://doi.org/10.1002/cbf.2910

Article  CAS  PubMed  Google Scholar 

Becker LV, da Silva Pereira Saccol R, Morsch VM et al (2019) Activity and expression of E-NTPDase is altered in peripheral lymphocytes of systemic lupus erythematosus patients. Clinica Chimica Acta 488:90–97. https://doi.org/10.1016/j.cca.2018.10.032

Article  CAS  Google Scholar 

Spanevello RM, Mazzanti CM, Bagatini M et al (2010) Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurol 257:24–30. https://doi.org/10.1007/s00415-009-5258-4

Article  CAS  PubMed  Google Scholar 

Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

PubMed  Google Scholar 

Costa LR, de Souza AKY, Scholl JN, et al (2021) Biochemical characterization of adenosine deaminase (Cd26; ec 3.5.4.4) activity in human lymphocyte-rich peripheral blood mononuclear cells. Braz J Med Biol Res 54:e10850. https://doi.org/10.1590/1414-431X2020E10850

Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular Localization of 5′-Nucleotidase in Rat Brain. J Neurochem 43:971–978. https://doi.org/10.1111/j.1471-4159.1984.tb12832.x

Article  CAS  PubMed  Google Scholar 

Pilla C, Emanuelli T, Frassetto SS et al (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 7:225–230. https://doi.org/10.3109/09537109609023582

Article  CAS  PubMed  Google Scholar 

Leal DBR, Streher CA, Neu TN et al (2005) Characterization of NTPDase (NTPDase1; Ecto-apyrase; ecto- diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta Gen Subj 1721:1–3. https://doi.org/10.1016/j.bbagen.2004.09.006

Article  CAS  Google Scholar 

Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380. https://doi.org/10.1016/0003-2697(86)90640-8

Article  CAS  PubMed  Google Scholar 

Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425.

Comments (0)

No login
gif