Bonan C, Teixeira LA, Nakano AR (2017) [Portuguese] Absorção e metabolização dos hormônios sexuais e sua transformação em tecnologias contraceptivas: percursos do pensamento médico no Brasil. Cien Saude Colet 22:107–116. https://doi.org/10.1590/1413-81232017221.26532016
Ribeiro CCM, Shimo AKK, de Lopes MHBM, Lamas JLT (2018) Effects of different hormonal contraceptives in women’s blood pressure values. Rev Bras Enferm 71:1453–1459. https://doi.org/10.1590/0034-7167-2017-0317
Almeida APF, Assis MM (2017) [Portuguese] Efeitos colaterais e alterações fisiológicas relacionadas ao uso contínuo de anticoncepcionais hormonais orais. Rev Eletrôn Atualiza Saúde 5:85–93
Golobof A, Kiley J (2016) The Current Status of Oral Contraceptives: Progress and Recent Innovations. Semin Reprod Med 34:145–151. https://doi.org/10.1055/s-0036-1572546
Article CAS PubMed Google Scholar
Plu-Bureau G, Maitrot-Mantelet L, Hugon-Rodin J, Canonico M (2013) Hormonal contraceptives and venous thromboembolism: An epidemiological update. Best Pract Res Clin Endocrinol Metab 27:25–34. https://doi.org/10.1016/j.beem.2012.11.002
Article CAS PubMed Google Scholar
Belicová M, Lukàč B, Dvorský J et al (2003) Thromboembolic disease and present oral contraception. Clin Appl Thromb Hemost 9:45–51. https://doi.org/10.1177/107602960300900106
Martínez F, Ramrez I, Pérez-Campos E et al (2012) Venous and pulmonary thromboembolism and combined hormonal contraceptives. Systematic review and meta-analysis. Eur J Contracept Reprod Health Care 17:7–29. https://doi.org/10.3109/13625187.2011.643836
Article CAS PubMed Google Scholar
Aslan AN, Süygün H, Sivri S, Keleş T (2016) Low-dose oral contraceptive-induced acute myocardial infarction. Eur J Contracept Reprod Health Care 21:499–501. https://doi.org/10.1080/13625187.2016.1225715
Article CAS PubMed Google Scholar
Humaish HH, Alasadi A, Aldafae I (2020) Evaluation the relationship between oral contraceptives containing drospirenone with dyslipidemia and risk of cardiovascular diseases among women in Al-Kut City. Indian J Forensic Med Toxicol 14:1920–1926. https://doi.org/10.37506/ijfmt.v14i4.11827
Douxfils J, Klipping C, Duijkers I et al (2020) Evaluation of the effect of a new oral contraceptive containing estetrol and drospirenone on hemostasis parameters. Contraception 102:396–402. https://doi.org/10.1016/j.contraception.2020.08.015
Article CAS PubMed Google Scholar
Gaussem P, Alhenc-Gelas M, Thomas JL et al (2011) Haemostatic effects of a new combined oral contraceptive, nomegestrol acetate/17β-estradiol, compared with those of levonorgestrel/ethinyl estradiol: A double-blind, randomised study. Thromb Haemost 105:560–567. https://doi.org/10.1160/TH10-05-0327
Article CAS PubMed Google Scholar
Kluft C, Zimmerman Y, Mawet M et al (2017) Reduced hemostatic effects with drospirenone-based oral contraceptives containing estetrol vs. ethinyl estradiol. Contraception 95:140–147. https://doi.org/10.1016/j.contraception.2016.08.018
Article CAS PubMed Google Scholar
Peeva E, Zouali M (2005) Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett 101:123–143. https://doi.org/10.1016/j.imlet.2005.05.014
Article CAS PubMed Google Scholar
Taşkşn S, Taşkşn EA, Seval MM et al (2009) Serum levels of adenosine deaminase and pregnancy-related hormones in hyperemesis gravidarum. J Perinat Med 37:32–35. https://doi.org/10.1515/JPM.2009.013
Tostes RC, Nigro D, Fortes ZB, Carvalho MHC (2003) Effects of estrogen on the vascular system. Braz J Med Biol Res 36:1143–1158. https://doi.org/10.1590/S0100-879X2003000900002
Article CAS PubMed Google Scholar
Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta Mol Cell Res 1783:673–694. https://doi.org/10.1016/j.bbamcr.2008.01.024
Deaglio S, Robson SC (2011) Ectonucleotidases as Regulators of Purinergic Signaling in Thrombosis, Inflammation, and Immunity. Adv Pharmacol 61:301–332. https://doi.org/10.1016/B978-0-12-385526-8.00010-2
Article CAS PubMed PubMed Central Google Scholar
Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4
Article CAS PubMed PubMed Central Google Scholar
Pochmann D, Böhmer AE, Bruno AN, Sarkis JJF (2005) Ecto-hydrolysis of adenine nucleotides in rat blood platelets are altered by ovariectomy. Platelets 16:334–339. https://doi.org/10.1080/09537100500124400
Article CAS PubMed Google Scholar
Hebanowska A, Mierzejewska P, Braczko A (2021) Effect of estradiol on enzymes of vascular extracellular nucleotide metabolism. Hormones 20:111–117. https://doi.org/10.1007/s42000-020-00242-6
Castilhos LG, Doleski PH, Adefegha SA et al (2016) Altered E-NTPDase/E-ADA activities and CD39 expression in platelets of sickle cell anemia patients. Biomed Pharmacother 79:241–246. https://doi.org/10.1016/j.biopha.2016.02.009
Article CAS PubMed Google Scholar
dos Santos Jaques JA, Becker LV, Souza V, do CG, et al (2013) Activities of enzymes that hydrolyze adenine nucleotides in lymphocytes from patients with rheumatoid arthritis. Cell Biochem Funct 31:395–399. https://doi.org/10.1002/cbf.2910
Article CAS PubMed Google Scholar
Becker LV, da Silva Pereira Saccol R, Morsch VM et al (2019) Activity and expression of E-NTPDase is altered in peripheral lymphocytes of systemic lupus erythematosus patients. Clinica Chimica Acta 488:90–97. https://doi.org/10.1016/j.cca.2018.10.032
Spanevello RM, Mazzanti CM, Bagatini M et al (2010) Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurol 257:24–30. https://doi.org/10.1007/s00415-009-5258-4
Article CAS PubMed Google Scholar
Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89
Costa LR, de Souza AKY, Scholl JN, et al (2021) Biochemical characterization of adenosine deaminase (Cd26; ec 3.5.4.4) activity in human lymphocyte-rich peripheral blood mononuclear cells. Braz J Med Biol Res 54:e10850. https://doi.org/10.1590/1414-431X2020E10850
Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular Localization of 5′-Nucleotidase in Rat Brain. J Neurochem 43:971–978. https://doi.org/10.1111/j.1471-4159.1984.tb12832.x
Article CAS PubMed Google Scholar
Pilla C, Emanuelli T, Frassetto SS et al (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 7:225–230. https://doi.org/10.3109/09537109609023582
Article CAS PubMed Google Scholar
Leal DBR, Streher CA, Neu TN et al (2005) Characterization of NTPDase (NTPDase1; Ecto-apyrase; ecto- diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta Gen Subj 1721:1–3. https://doi.org/10.1016/j.bbagen.2004.09.006
Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380. https://doi.org/10.1016/0003-2697(86)90640-8
Article CAS PubMed Google Scholar
Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425.
Comments (0)