Epidemiological Study in Antiviral Innate Immunity

Liu X, Zhu C, Jia S et al (2024) Dual modifying of MAVS at lysine 7 by SIRT3-catalyzed deacetylation and SIRT5-catalyzed desuccinylation orchestrates antiviral innate immunity. Proc Natl Acad Sci USA 121(17):e2314201121

Article  CAS  Google Scholar 

Liu Y, Qin Y, Yang B et al (2024) Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity. J Virol 98:e0048324

Article  Google Scholar 

Sun X, Liu T, Zhao J et al (2020) DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat Commun 11(1):6182

Article  CAS  PubMed Central  Google Scholar 

Zhu J, Li X, Cai X et al (2021) Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell 81(15):3171–86.e8

Article  CAS  Google Scholar 

Röhrig B, du Prel JB, Wachtlin D et al (2009) Types of study in medical research: part 3 of a series on evaluation of scientific publications. Deutsches Arzteblatt International 106(15):262–268

PubMed Central  Google Scholar 

Guralnik JM, Manolio TA (2007) Chapter 16—design and conduct of observational studies and clinical trials. In: Gallin JI, Ognibene FP (eds) Principles and practice of clinical research, 2nd edn. Academic Press, Burlington, pp 197–217

Chapter  Google Scholar 

Wang X, Kattan MW (2020) Cohort studies: design, analysis, and reporting. Chest 158(Suppl 1):S72–SS8

Article  Google Scholar 

Cowan J, Amson A, Christofides A et al (2023) Monoclonal antibodies as COVID-19 prophylaxis therapy in immunocompromised patient populations. Int J Infect Dis 134:228–238

Article  CAS  Google Scholar 

Zur M, Peselev T, Yanko S et al (2024) Efficacy and safety of antiviral treatments for symptomatic COVID-19 outpatients: systematic review and network meta-analysis. Antivir Res 221:105768

Article  CAS  Google Scholar 

Calderón-Parra J, Gutiérrez-Villanueva A, Ronda-Roca G et al (2024) Efficacy and safety of antiviral plus anti-spike monoclonal antibody combination therapy vs. iontotherapy for high-risk immunocompromised patients with mild-to-moderate SARS-CoV2 infection during the omicron era: a prospective cohort study. Int J Antimicrob Agents 63(3):107095

Article  Google Scholar 

Martinez-Portilla RJ, Sotiriadis A, Chatzakis C et al (2021) Pregnant women with SARS-CoV-2 infection are at higher risk of death and pneumonia: a propensity score-matched analysis of a nationwide prospective cohort (COV19Mx). Ultrasound Obstet Gynecol 57(2):224–231

Article  CAS  Google Scholar 

Coler B, Wu T-Y, Carlson L et al (2023) Diminished antiviral innate immune gene expression in the placenta following a maternal SARS-CoV-2 infection. Am J Obstet Gynecol 228(4):463.e1

Article  CAS  Google Scholar 

Liang W, Li X, Wang H et al (2023) Exploration of the common gene and potential molecular mechanisms between Herpes simplex virus 1 infection and Alzheimer’s disease. Genes Dis 10(3):746–749

Article  CAS  Google Scholar 

Conde-Glez C, Lazcano-Ponce E, Rojas R et al (2013) Seroprevalences of varicella-zoster virus, herpes simplex virus and cytomegalovirus in a cross-sectional study in Mexico. Vaccine 31(44):5067–5074

Article  Google Scholar 

Mann CJ (2003) Observational research methods. Research design II: cohort, cross sectional, and case control studies. Emerg Med J 20(1):54–60

Article  CAS  PubMed Central  Google Scholar 

Díaz Ibarra EA, Abella Pinzón JA, Medina YF (2023) Methodology: how to develop a case report or case series report. Revista Colombiana de Reumatología (English Edition) 30(2):129–136

Article  Google Scholar 

Zhu H, Zheng C (2020) The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1. Microbiol Mol Biol Rev. 84(4):e00099–20.

Google Scholar 

Katz J, Yue S, Xue W (2022) Herpes simplex and herpes zoster viruses in COVID-19 patients. Ir J Med Sci 191(3):1093–1097

Article  CAS  Google Scholar 

Inoue K, Aoki H, Toru S et al (2024) Early-onset herpes simplex encephalitis type 1 triggered by COVID-19 disease: a case report. Radiol Case Report 19(3):855–858

Article  Google Scholar 

Gerß JWO, Ko¨pcke W. (2010) Clinical trials and rare diseases. Rare Dis Epidemiol 686:173–190

Article  Google Scholar 

Zelek WM, Harrison RA (2023) Complement and COVID-19: three years on, what we know, what we don’t know, and what we ought to know. Immunobiology 228(3):152393

Article  CAS  PubMed Central  Google Scholar 

Jadad AAR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

Article  CAS  Google Scholar 

Fawzy A, Wu TD, Wang K et al (2023) Clinical outcomes associated with overestimation of oxygen saturation by pulse oximetry in patients hospitalized with COVID-19. JAMA Netw Open 6(8):e2330856

Article  PubMed Central  Google Scholar 

Choudhary D, Garg PK (2011) Primary outcome in a randomized controlled trial: a critical issue. Saudi J Gastroenterol 17(5):369

Article  PubMed Central  Google Scholar 

Furberg CD, Friedman LM (2012) Approaches to data analyses of clinical trials. Prog Cardiovasc Dis 54(4):330–334

Article  Google Scholar 

Mabrey FL, Nian H, Yu C et al (2023) Phase 2, randomized, double-blind, placebo-controlled multi-center trial of the clinical and biological effects of anti-CD14 treatment in hospitalized patients with COVID-19 pneumonia. EBioMedicine 93:104667

Article  CAS  PubMed Central  Google Scholar 

Comments (0)

No login
gif