Mesoscale Imaging of Neural Dynamics in Epilepsy

Hill DK, Keynes RD (1949) Opacity changes in stimulated nerve. J Physiol 108(3):278–281

Article  Google Scholar 

Frostig RD et al (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87(16):6082–6086

Article  CAS  Google Scholar 

Grinvald A et al (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324(6095):361–364

Article  CAS  Google Scholar 

Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431

Article  CAS  Google Scholar 

Tasaki I et al (1968) Changes in fluorescence turbidity and birefringence associated with nerve excitation. Proc Natl Acad Sci USA 61(3):883

Article  CAS  Google Scholar 

Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurons of an invertebrate central nervous-system. Nature 246(5434):508–509

Article  CAS  Google Scholar 

Grinvald A, Petersen CC (2015) Imaging the dynamics of neocortical population activity in behaving and freely moving mammals. Adv Exp Med Biol 859:273–296

Article  Google Scholar 

Sharon D, Grinvald A (2002) Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295(5554):512–515

Article  CAS  Google Scholar 

Tsien RY (1989) Fluorescent-probes of cell signaling. Annu Rev Neurosci 12:227–253

Article  CAS  Google Scholar 

Braubach O, Cohen LB, Choi Y (2015) Historical overview and general methods of membrane potential imaging. Adv Exp Med Biol 859:3–26

Article  Google Scholar 

Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104(1–2):40–50

Article  CAS  Google Scholar 

Storace D et al (2015) Genetically encoded protein sensors of membrane potential, vol 859. Membrane potential imaging in the nervous system and heart, pp 493–509

Google Scholar 

Chen Y et al (2020) Soma-targeted imaging of neural circuits by ribosome tethering. Neuron 107(3):454–469 e6

Article  CAS  Google Scholar 

Shemesh OA et al (2020) Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron 107(3):470–486.e11

Article  CAS  Google Scholar 

Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067

Article  CAS  Google Scholar 

Zhao M et al (2009) Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. J Neurosci 29(9):2814–2823

Article  CAS  Google Scholar 

Ma HT et al (2009) The importance of latency in the focality of perfusion and oxygenation changes associated with triggered after discharges in human cortex. J Cereb Blood Flow Metab 29(5):1003–1014

Article  Google Scholar 

Ma HT et al (2014) Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 1(1):015003

Article  Google Scholar 

Liou JY et al (2018) Role of inhibitory control in modulating focal seizure spread. Brain 141:2083–2097

Article  Google Scholar 

Yang F et al (2021) Mesoscopic mapping of ictal neurovascular coupling in awake behaving mice using optical spectroscopy and genetically encoded calcium indicators. Front Neurosci 15:704834

Article  Google Scholar 

Luo P et al (2023) Excitatory-inhibitory mismatch shapes node recruitment in an epileptic network. Epilepsia 64:1939

Article  CAS  Google Scholar 

Rynes ML et al (2021) Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nat Methods 18(4):417–425

Article  CAS  Google Scholar 

Li J et al (2024) Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice. J Cereb Blood Flow Metab 44:911

Article  Google Scholar 

Prince DA, Wilder BJ (1967) Control mechanisms in cortical epileptogenic foci – surround inhibition. Arch Neurol 16(2):194–202

Article  CAS  Google Scholar 

Jackson RB, Laboratory M, Green EL (1966) Biology of the laboratory mouse, 2nd edn. Blakiston Division, New York, xii 706 p

Google Scholar 

Dana H et al (2014) Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 9(9):e108697

Article  Google Scholar 

Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

Article  CAS  Google Scholar 

Huang L et al (2021) Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice. elife 10:10

Article  Google Scholar 

Lohani S et al (2022) Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat Neurosci 25(12):1706–1713

Article  CAS  Google Scholar 

Ji GJ et al (2004) Ca2+-sensing transgenic mice – postsynaptic signaling in smooth muscle. J Biol Chem 279(20):21461–21468

Article  CAS  Google Scholar 

Heo C et al (2016) A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep 6:27818

Article  CAS  Google Scholar 

Franklin KBJ, Paxinos G (2013) Paxinos and Franklin’s The mouse brain in stereotaxic coordinates, 4th edn. Academic, Amsterdam, an imprint of Elsevier. 1 volume (unpaged)

Google Scholar 

Baird-Daniel E et al (2017) Glial calcium waves are triggered by seizure activity and not essential for initiating ictal onset or neurovascular coupling. Cereb Cortex 27(6):3318–3330

Article  Google Scholar 

Schafer EW Jr, Brunton RB, Cunningham DJ (1973) A summary of the acute toxicity of 4-aminopyridine to birds and mammals. Toxicol Appl Pharmacol 26(4):532–538

Article  CAS  Google Scholar 

Ma Y et al (2016) Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc B Biol Sci 371(1705):20150360

Article  Google Scholar 

Chen-Bee CH et al (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68(1):27–37

Article  CAS  Google Scholar 

Saggio ML et al (2020) A taxonomy of seizure dynamotypes. elife 9:e55632

Article  CAS  Google Scholar 

Esteller R et al (2001) Line length: An efficient feature for seizure onset detection. In: Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society, Vols 1–4, vol 23, pp 1707–1710

Google Scholar 

Ma HT et al (2009) Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 101(5):2550–2562

Article  Google Scholar 

Ma HT, Wu CH, Wu JY (2004) Initiation of spontaneous epileptiform events in the rat neocortex in vivo. J Neurophysiol 91(2):934–945

Article  Google Scholar 

Ma H, Zhao M, Schwartz TH (2013) Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume. Cereb Cortex 23(4):885–899

Article  Google Scholar 

Jackson JH (1958) Selected writings. Basic Books, New York

Google Scholar 

Takashima I, Kajiwara R, Iijima T (2001) Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex. Neuroreport 12(13):2889–2894

Article  CAS  Google Scholar 

Bahar S et al (2006) Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’. Neuroreport 17(5):499–503

Article  Google Scholar 

Chen BR et al (2014) A critical role for the vascular endothelium in functional neurovas

Comments (0)

No login
gif