Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells

Walsh G, Walsh E (2022) Biopharmaceutical benchmarks 2022. Nat Biotechnol 40(12):1722–1760

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

Article  PubMed  CAS  Google Scholar 

Altamirano C, Paredes C, Cairó JJ, Gòdia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16(1):69–75

Article  PubMed  CAS  Google Scholar 

Prentice HL, Ehrenfels BN, Sisk WP (2007) Improving performance of mammalian cells in fed-batch processes through “bioreactor evolution”. Biotechnol Prog 23(2):458–464

Article  PubMed  CAS  Google Scholar 

Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 24(6):1102–1107

Article  PubMed  Google Scholar 

Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10(7):939–949

Article  PubMed  CAS  Google Scholar 

Nguyen M, Zimmer A (2023) A reflection on the improvement of Chinese hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 65:108141

Article  PubMed  CAS  Google Scholar 

Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E et al (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

Article  PubMed  CAS  Google Scholar 

Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B et al (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31(8):694–695

Article  PubMed  CAS  Google Scholar 

Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16(1):160

Article  PubMed  PubMed Central  Google Scholar 

Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y et al (2008) How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin 40(5):426–436

Article  PubMed  CAS  Google Scholar 

Bryan L, Clynes M, Meleady P (2021) The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 49:107757

Article  PubMed  CAS  Google Scholar 

Bryan L, Henry M, Kelly RM, Lloyd M, Frye CC, Osborne MD et al (2021) Global phosphoproteomic study of high/low specific productivity industrially relevant mAb producing recombinant CHO cell lines. Curr Res Biotechnol 3:49–56

Article  CAS  Google Scholar 

Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P (2017) Differential Phosphoproteomic analysis of recombinant Chinese hamster ovary cells following temperature shift. J Proteome Res 16(7):2339–2358

Article  PubMed  CAS  Google Scholar 

Kaushik P, Henry M, Clynes M, Meleady P (2018) The expression pattern of the Phosphoproteome is significantly changed during the growth phases of recombinant CHO cell culture. Biotechnol J 13(10):e1700221

Article  PubMed  Google Scholar 

Kaushik P, Curell RVB, Henry M, Barron N, Meleady P (2020) LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Biotechnol Lett 42(12):2523–2536

Article  PubMed  CAS  Google Scholar 

Dahodwala H, Kaushik P, Tejwani V, Kuo CC, Menard P, Henry M et al (2019) Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Curr Res Biotechnol 1:49–57

Article  PubMed  PubMed Central  Google Scholar 

Chang M, Huhn S, Nelson L, Betenbaugh M, Du Z (2022) Significant impact of mTORC1 and ATF4 pathways in CHO cell recombinant protein production induced by CDK4/6 inhibitor. Biotechnol Bioeng 119(5):1189–1206

Article  PubMed  CAS  Google Scholar 

Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R (2019) Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 103(19):8127–8143

Article  PubMed  CAS  Google Scholar 

Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439

Article  PubMed  CAS  Google Scholar 

Cohen P (2001) The role of protein phosphorylation in human health and disease.: Delivered on June 30th 2001 at the FEBS Meeting in Lisbon. Eur J Biochem 268(19):5001–5010

Article  PubMed  CAS  Google Scholar 

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ et al (2010) Quantitative Phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. [cited 2024 Feb 5]. Available from: https://www.science.org/doi/10.1126/scisignal.2000475

Article  PubMed  Google Scholar 

Dephoure N, Gould KL, Gygi SP, Kellogg DR (2013) Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Drubin DG, editor. Mol Biol Cell 24(5):535–542

Article  PubMed  PubMed Central  CAS  Google Scholar 

Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

Article  PubMed  CAS  Google Scholar 

Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39(4):183–190

Article  PubMed  PubMed Central  CAS  Google Scholar 

Farrell AS, Allen-Petersen B, Daniel CJ, Wang X, Wang Z, Rodriguez S et al (2014) Targeting inhibitors of the tumor suppressor PP2A for the treatment of pancreatic cancer. Mol Cancer Res 12(6):924–939

Article  PubMed  PubMed Central  CAS  Google Scholar 

Whitmarsh AJ, Davis RJ (2000) Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci 57(8):1172–1183

Article  PubMed  PubMed Central  CAS  Google Scholar 

Simon GM, Cravatt BF (2008) Challenges for the ‘chemical-systems’ biologist. Nat Chem Biol 4(11):639–642

Article  PubMed  CAS  Google Scholar 

Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW et al (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41(10):3912–3928

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a Phosphoproteomics strategy for the rapid separation of Monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

Comments (0)

No login
gif