Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(7):992–1000. https://doi.org/10.1038/nbt0910-917
Article PubMed CAS Google Scholar
Kim JY, Kim Y-GG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930. https://doi.org/10.1007/s00253-011-3758-5
Article PubMed CAS Google Scholar
Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145. https://doi.org/10.1038/nbt.4305
Article PubMed CAS Google Scholar
Dahodwala H, Lee KH (2019) The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol 60(August 2018):128–137. https://doi.org/10.1016/j.copbio.2019.01.011
Article PubMed CAS Google Scholar
Dietmair S, Nielsen LK, Timmins NE (2012) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7(1):75–89. https://doi.org/10.1002/biot.201100369
Article PubMed CAS Google Scholar
Datta P, Linhardt RJ, Sharfstein ST (2013) An ‘omics approach towards CHO cell engineering. Biotechnol Bioeng 110(5):1255–1271. https://doi.org/10.1002/bit.24841
Hacker DL, De Jesus M, Wurm FM (2009) 25 years of recombinant proteins from reactor-grown cells – where do we go from here? Biotechnol Adv 27(6):1023–1027. https://doi.org/10.1016/j.biotechadv.2009.05.008
Article PubMed CAS Google Scholar
Matasci M, Hacker DL, Baldi L, Wurm FM (2008) Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discov Today Technol 5(2‚Äì3):e37–e42. https://doi.org/10.1016/j.ddtec.2008.12.003
Xu X et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741. https://doi.org/10.1038/nbt.1932
Article PubMed PubMed Central CAS Google Scholar
Dietmair S et al (2012) Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng 109(6):1404–1414. https://doi.org/10.1002/bit.24496
Article PubMed CAS Google Scholar
Kretzmer C et al (2022) De novo assembly and annotation of the CHOZN® GS-/- genome supports high-throughput genome-scale screening. Biotechnol Bioeng 119(12):3632–3646. https://doi.org/10.1002/bit.28226
Article PubMed PubMed Central CAS Google Scholar
Hilliard W, MacDonald ML, Lee KH (2020) Chromosome-scale scaffolds for the Chinese hamster reference genome assembly to facilitate the study of the CHO epigenome. Biotechnol Bioeng 117(8):2331–2339. https://doi.org/10.1002/bit.27432
Article PubMed CAS Google Scholar
Nissom PM et al (2006) Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells. Mol Biotechnol 34(2):125–140. https://doi.org/10.1385/MB:34:2:125
Article PubMed CAS Google Scholar
Vishwanathan N et al (2014) Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnol Bioeng 111(3):518–528. https://doi.org/10.1002/bit.25117
Article PubMed CAS Google Scholar
Yee JC, Gerdtzen ZP, Hu WS (2009) Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng 102(1):246–263. https://doi.org/10.1002/bit.22039
Article PubMed CAS Google Scholar
Wuest DM, Harcum SW, Lee KH (2012) Genomics in mammalian cell culture bioprocessing. Biotechnol Adv 30(3):629–638. https://doi.org/10.1016/j.biotechadv.2011.10.010
Article PubMed CAS Google Scholar
Jayapal KP, Wlaschin KF, Hu W-SH, Yap MGS (October 2007) Recombinant protein therapeutics from CHO cells – 20 years and counting. CEP Mag:40–47
Wlaschin KF, Hu WS (2007) A scaffold for the Chinese hamster genome. Biotechnol Bioeng 98(2):429–439. https://doi.org/10.1002/bit.21430
Article PubMed CAS Google Scholar
Lewis NE et al (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–767. https://doi.org/10.1038/nbt.2624
Article PubMed CAS Google Scholar
Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16:160. https://doi.org/10.1186/s12864-015-1391-x
Article PubMed PubMed Central CAS Google Scholar
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T (2015) The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J Biotechnol 199:38–46. https://doi.org/10.1016/j.jbiotec.2015.02.014
Article PubMed CAS Google Scholar
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T (2012) Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol Bioeng 109:1357–1367. https://doi.org/10.1002/bit.24347
Article PubMed CAS Google Scholar
Hernandez I et al (2019) Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture. Biotechnol Bioeng 116(3):677–692. https://doi.org/10.1002/bit.26891
Article PubMed PubMed Central CAS Google Scholar
Feichtinger J et al (2016) Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol Bioeng 113(10):2241–2253. https://doi.org/10.1002/bit.25990
Article PubMed PubMed Central CAS Google Scholar
Dahodwala H, Amenyah SD, Nicoletti S, Henry MN, Lees-Murdock DJ, Sharfstein ST (2022) Evaluation of site-specific methylation of the CMV promoter and its role in CHO cell productivity of a recombinant monoclonal antibody. Antib Ther 5(2):121–129. https://doi.org/10.1093/abt/tbac010
Article PubMed PubMed Central CAS Google Scholar
Dahodwala H et al (2019) Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Curr Res Biotechnol 1:49–57. https://doi.org/10.1016/j.crbiot.2019.09.001
Article PubMed PubMed Central Google Scholar
Courtes FC et al (2013) Translatome analysis of CHO cells to identify key growth genes. J Biotechnol 167(3):215–224. https://doi.org/10.1016/j.jbiotec.2013.07.010
Article PubMed CAS Google Scholar
Könitzer JD et al (2015) A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation. Biotechnol J 10(9):1412–1423. https://doi.org/10.1002/biot.201400652
Article PubMed CAS Google Scholar
Wong DCF, Wong NSC, Goh JSY, May LM, Yap MGS (2010) Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures. Biotechnol Bioeng 107(3):516–528. https://doi.org/10.1002/bit.22828
Article PubMed CAS Google Scholar
Schaub J, Clemens C, Kaufmann H, Schulz TW (2012) Advancing biopharmaceutical process development by system-level data analysis and integration of omics data. Adv Biochem Eng Biotechnol 127:133–163. https://doi.org/10.1007/10_2010_98
Comments (0)