RNA Sequencing-Based Transcriptome Analysis of Seasonal Coat Color Change in Arctic Fox ()

Zimova, M., Hackländer, K., Good, J.M., et al., Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?, Biol. Rev. Cambridge Philos. Soc., 2018, vol. 93, no. 3, pp. 1478—1498. https://doi.org/10.1111/brv.12405

Article  PubMed  Google Scholar 

Mills, L.S., Zimova, M., Oyler, J., et al., Camouflage mismatch in seasonal coat color due to decreased snow duration, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 18, pp. 7360—7365. https://doi.org/10.1073/pnas.1222724110

Article  PubMed  PubMed Central  Google Scholar 

Caro, T., The adaptive significance of coloration in mammals, BioScience, 2005, vol. 55, no. 2, pp. 125—136. https://doi.org/10.1641/0006-3568(2005)055[0125:TAS-OCI]2.0.CO;2

Article  Google Scholar 

Lincoln, G.A., Clarke, I.J., Hut, R.A., et al., Characterizing a mammalian circannual pacemaker, Science, 2006, vol. 314, no. 5807, pp. 1941—1944. https://doi.org/10.1126/science.1132009

Article  CAS  PubMed  Google Scholar 

Bradshaw, W.E. and Holzapfel, C.M., Evolution of animal photoperiodism, Annu. Rev. Ecol. Evol. Syst., 2007, vol. 38, no. 1, pp. 1—25. https://doi.org/10.1146/annurev.ecolsys.37.091305.11-0115

Article  Google Scholar 

Goldman, B.D., Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement, J. Biol. Rhythms, 2001, vol. 16, no. 4, pp. 283—301. https://doi.org/10.1177/074873001129001980

Article  CAS  PubMed  Google Scholar 

Meddle, S.L., Bentley, G.E. and King, V.M., Photoperiodism in Birds and Mammals, Berlin: Springer-Verlag, 2002.

Book  Google Scholar 

Cagnacci, A. and Volpe, A., Influence of melatonin and photoperiod on animal and human reproduction, J. Endocrinol. Invest., 1996, vol. 19, no. 6, pp. 382—411. https://doi.org/10.1007/BF03344974

Article  CAS  PubMed  Google Scholar 

Logan, A. and Weatherhead, B., Photoperiodic dependence of seasonal changes in pituitary content of melanocyte-stimulating hormone, Neuroendocrinology, 2008, vol. 30, no. 5, pp. 309—312. https://doi.org/10.1159/000123019

Article  Google Scholar 

Hofman, M.A., The brain’s calendar: neural mechanisms of seasonal timing, Biol. Rev. Cambridge. Philos. Soc., 2004, vol. 79, no. 1, pp. 61—77. https://doi.org/10.1017/s1464793103006250

Article  PubMed  Google Scholar 

Tackenberg, M.C. and McMahon, D.G., Photoperiodic programming of the SCN and its role in photoperiodic output, Neural Plast., 2018, vol. 2018, p. 8217345. https://doi.org/10.1155/2018/8217345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hearing, V.J., Biogenesis of pigment granules: a sensitive way to regulate melanocyte function, J. Dermatol. Sci., 2005, vol. 37, no. 1, pp. 3—14. https://doi.org/10.1016/j.jdermsci.2004.08.014

Article  CAS  PubMed  Google Scholar 

Hu, S., Zhai, P., Chen, Y., et al., Morphological characterization and gene expression patterns for melanin pigmentation in rex rabbit, Biochem. Genet., 2019, vol. 57, no. 5, pp. 734—744. https://doi.org/10.1007/s10528-019-09929-x

Article  CAS  PubMed  Google Scholar 

Ito, S. and Wakamatsu, K., Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin, J. Eur. Acad. Dermatol. Venereol., 2011, vol. 25, no. 12, pp. 1369—1380. https://doi.org/10.1111/j.1468-3083.2011.04278.x

Article  CAS  PubMed  Google Scholar 

Lamoreux, M.L., Wakamatsu, K. and Ito, S., Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin, Pigm. Cell Res., 2001, vol. 14, no. 1, pp. 23—31. https://doi.org/10.1034/j.1600-0749.2001.140105.x

Article  CAS  Google Scholar 

Lin, J.Y. and Fisher, D.E., Melanocyte biology and skin pigmentation, Nature, 2007, vol. 445, no. 7130, pp. 843—850. https://doi.org/10.1038/nature05660

Article  CAS  PubMed  Google Scholar 

Logan, A. and Weatherhead, B., Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro, J. Invest. Dermatol., 1980, vol. 74, no. 1, pp. 47—50. https://doi.org/10.1111/1523-1747.ep12514608

Article  CAS  PubMed  Google Scholar 

Hubbard, J.K., Environmental and genetic influences on melanin-based plumage coloration: implications for population divergence, Cand. Sci. Dissertation, Boulder: University of Colorado, 2014.

Tietgen, L., Hagen, I.J., Kleven, O., et al., Fur colour in the Arctic fox: genetic architecture and consequences for fitness, Proc. Biol. Sci., 2021, vol. 288, no. 1959, p. 20211452. https://doi.org/10.1098/rspb.2021.1452

Våge, D.I., Fuglei, E., Snipstad, K., et al., Two cysteine substitutions in the MC1R generate the blue variant of the Arctic fox (Alopex lagopus) and prevent expression of the white winter coat, Peptides, 2005, vol. 26, no. 10, pp. 1814—1817. https://doi.org/10.1016/j.peptides.2004.11.040

Article  CAS  PubMed  Google Scholar 

Ferreira, M.S., Alves, P.C., Callahan, C.M., et al., Transcriptomic regulation of seasonal coat color change in hares, Ecol. Evol., 2020, vol. 10, no. 3, pp. 1180—1192. https://doi.org/10.1002/ece3.5956

Article  PubMed  PubMed Central  Google Scholar 

Ferreira, M.S., Alves, P.C., Callahan, C.M., et al., The transcriptional landscape of seasonal coat colour moult in the snowshoe hare, Mol. Ecol., 2017, vol. 26, no. 16, pp. 4173—4185. https://doi.org/10.1111/mec.14177

Article  PubMed  Google Scholar 

Giska, I., Farelo, L., Pimenta, J., et al., Introgression drives repeated evolution of winter coat color polymorphism in hares, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 48, pp. 24150—24156. https://doi.org/10.1073/pnas.1910471116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, M.R., Mills, L.S., Alves, P.C., et al., Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares, Science, 2018, vol. 360, no. 6395, pp. 1355—1358. https://doi.org/10.1126/science.aar5273

Article  CAS  PubMed  Google Scholar 

Schwartz, C. and Andrews, M.T., Circannual transitions in gene expression: lessons from seasonal adaptations, Curr. Top. Dev. Biol., 2013, vol. 105, pp. 247—273. https://doi.org/10.1016/b978-0-12-396968-2.00009-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Underwood, L.S. and Reynolds, P., Photoperiod and fur lengths in the arctic fox (Alopex lagopus L.), Int. J. Biometeorol., 1980, vol. 24, pp. 39—48. https://doi.org/10.1007/BF02245540

Article  Google Scholar 

Cecchi, T., Cozzali, C., Passamonti, P., et al., Melanins and melanosomes from llama (Lama glama L.), Pigm. Cell Res., 2004, vol. 17, no. 3, pp. 307—311. https://doi.org/10.1111/j.1600-0749.2004.00139.x

Article  CAS  Google Scholar 

Liao, Y., Smyth, G.K., and Shi, W., featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 2014, vol. 30, no. 7, pp. 923—930. https://doi.org/10.1093/bioinformatics/btt656

Article  CAS  PubMed  Google Scholar 

Love, M.I., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 2014, vol. 15, no. 12, p. 550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., B, 1995, vol. 57, no. 1, pp. 289—300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402—408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Venn, J., On the diagrammatic and mechanical representation of propositions and reasonings, London Edinburg Philos. Mag., 1880, vol. 10, no. 59, pp. 1—18. https://doi.org/10.1080/14786448008626877

Article 

Comments (0)

No login
gif