Zimova, M., Hackländer, K., Good, J.M., et al., Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?, Biol. Rev. Cambridge Philos. Soc., 2018, vol. 93, no. 3, pp. 1478—1498. https://doi.org/10.1111/brv.12405
Mills, L.S., Zimova, M., Oyler, J., et al., Camouflage mismatch in seasonal coat color due to decreased snow duration, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 18, pp. 7360—7365. https://doi.org/10.1073/pnas.1222724110
Article PubMed PubMed Central Google Scholar
Caro, T., The adaptive significance of coloration in mammals, BioScience, 2005, vol. 55, no. 2, pp. 125—136. https://doi.org/10.1641/0006-3568(2005)055[0125:TAS-OCI]2.0.CO;2
Lincoln, G.A., Clarke, I.J., Hut, R.A., et al., Characterizing a mammalian circannual pacemaker, Science, 2006, vol. 314, no. 5807, pp. 1941—1944. https://doi.org/10.1126/science.1132009
Article CAS PubMed Google Scholar
Bradshaw, W.E. and Holzapfel, C.M., Evolution of animal photoperiodism, Annu. Rev. Ecol. Evol. Syst., 2007, vol. 38, no. 1, pp. 1—25. https://doi.org/10.1146/annurev.ecolsys.37.091305.11-0115
Goldman, B.D., Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement, J. Biol. Rhythms, 2001, vol. 16, no. 4, pp. 283—301. https://doi.org/10.1177/074873001129001980
Article CAS PubMed Google Scholar
Meddle, S.L., Bentley, G.E. and King, V.M., Photoperiodism in Birds and Mammals, Berlin: Springer-Verlag, 2002.
Cagnacci, A. and Volpe, A., Influence of melatonin and photoperiod on animal and human reproduction, J. Endocrinol. Invest., 1996, vol. 19, no. 6, pp. 382—411. https://doi.org/10.1007/BF03344974
Article CAS PubMed Google Scholar
Logan, A. and Weatherhead, B., Photoperiodic dependence of seasonal changes in pituitary content of melanocyte-stimulating hormone, Neuroendocrinology, 2008, vol. 30, no. 5, pp. 309—312. https://doi.org/10.1159/000123019
Hofman, M.A., The brain’s calendar: neural mechanisms of seasonal timing, Biol. Rev. Cambridge. Philos. Soc., 2004, vol. 79, no. 1, pp. 61—77. https://doi.org/10.1017/s1464793103006250
Tackenberg, M.C. and McMahon, D.G., Photoperiodic programming of the SCN and its role in photoperiodic output, Neural Plast., 2018, vol. 2018, p. 8217345. https://doi.org/10.1155/2018/8217345
Article CAS PubMed PubMed Central Google Scholar
Hearing, V.J., Biogenesis of pigment granules: a sensitive way to regulate melanocyte function, J. Dermatol. Sci., 2005, vol. 37, no. 1, pp. 3—14. https://doi.org/10.1016/j.jdermsci.2004.08.014
Article CAS PubMed Google Scholar
Hu, S., Zhai, P., Chen, Y., et al., Morphological characterization and gene expression patterns for melanin pigmentation in rex rabbit, Biochem. Genet., 2019, vol. 57, no. 5, pp. 734—744. https://doi.org/10.1007/s10528-019-09929-x
Article CAS PubMed Google Scholar
Ito, S. and Wakamatsu, K., Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin, J. Eur. Acad. Dermatol. Venereol., 2011, vol. 25, no. 12, pp. 1369—1380. https://doi.org/10.1111/j.1468-3083.2011.04278.x
Article CAS PubMed Google Scholar
Lamoreux, M.L., Wakamatsu, K. and Ito, S., Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin, Pigm. Cell Res., 2001, vol. 14, no. 1, pp. 23—31. https://doi.org/10.1034/j.1600-0749.2001.140105.x
Lin, J.Y. and Fisher, D.E., Melanocyte biology and skin pigmentation, Nature, 2007, vol. 445, no. 7130, pp. 843—850. https://doi.org/10.1038/nature05660
Article CAS PubMed Google Scholar
Logan, A. and Weatherhead, B., Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro, J. Invest. Dermatol., 1980, vol. 74, no. 1, pp. 47—50. https://doi.org/10.1111/1523-1747.ep12514608
Article CAS PubMed Google Scholar
Hubbard, J.K., Environmental and genetic influences on melanin-based plumage coloration: implications for population divergence, Cand. Sci. Dissertation, Boulder: University of Colorado, 2014.
Tietgen, L., Hagen, I.J., Kleven, O., et al., Fur colour in the Arctic fox: genetic architecture and consequences for fitness, Proc. Biol. Sci., 2021, vol. 288, no. 1959, p. 20211452. https://doi.org/10.1098/rspb.2021.1452
Våge, D.I., Fuglei, E., Snipstad, K., et al., Two cysteine substitutions in the MC1R generate the blue variant of the Arctic fox (Alopex lagopus) and prevent expression of the white winter coat, Peptides, 2005, vol. 26, no. 10, pp. 1814—1817. https://doi.org/10.1016/j.peptides.2004.11.040
Article CAS PubMed Google Scholar
Ferreira, M.S., Alves, P.C., Callahan, C.M., et al., Transcriptomic regulation of seasonal coat color change in hares, Ecol. Evol., 2020, vol. 10, no. 3, pp. 1180—1192. https://doi.org/10.1002/ece3.5956
Article PubMed PubMed Central Google Scholar
Ferreira, M.S., Alves, P.C., Callahan, C.M., et al., The transcriptional landscape of seasonal coat colour moult in the snowshoe hare, Mol. Ecol., 2017, vol. 26, no. 16, pp. 4173—4185. https://doi.org/10.1111/mec.14177
Giska, I., Farelo, L., Pimenta, J., et al., Introgression drives repeated evolution of winter coat color polymorphism in hares, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 48, pp. 24150—24156. https://doi.org/10.1073/pnas.1910471116
Article CAS PubMed PubMed Central Google Scholar
Jones, M.R., Mills, L.S., Alves, P.C., et al., Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares, Science, 2018, vol. 360, no. 6395, pp. 1355—1358. https://doi.org/10.1126/science.aar5273
Article CAS PubMed Google Scholar
Schwartz, C. and Andrews, M.T., Circannual transitions in gene expression: lessons from seasonal adaptations, Curr. Top. Dev. Biol., 2013, vol. 105, pp. 247—273. https://doi.org/10.1016/b978-0-12-396968-2.00009-9
Article CAS PubMed PubMed Central Google Scholar
Underwood, L.S. and Reynolds, P., Photoperiod and fur lengths in the arctic fox (Alopex lagopus L.), Int. J. Biometeorol., 1980, vol. 24, pp. 39—48. https://doi.org/10.1007/BF02245540
Cecchi, T., Cozzali, C., Passamonti, P., et al., Melanins and melanosomes from llama (Lama glama L.), Pigm. Cell Res., 2004, vol. 17, no. 3, pp. 307—311. https://doi.org/10.1111/j.1600-0749.2004.00139.x
Liao, Y., Smyth, G.K., and Shi, W., featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 2014, vol. 30, no. 7, pp. 923—930. https://doi.org/10.1093/bioinformatics/btt656
Article CAS PubMed Google Scholar
Love, M.I., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 2014, vol. 15, no. 12, p. 550. https://doi.org/10.1186/s13059-014-0550-8
Article CAS PubMed PubMed Central Google Scholar
Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., B, 1995, vol. 57, no. 1, pp. 289—300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402—408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Venn, J., On the diagrammatic and mechanical representation of propositions and reasonings, London Edinburg Philos. Mag., 1880, vol. 10, no. 59, pp. 1—18. https://doi.org/10.1080/14786448008626877
Comments (0)