Integrative RNA-Sequencing Analysis Reveals T-Cell Exhaustion Signatures and Immune Cell Infiltration in Hepatocellular Carcinoma

Ju, W., Zheng, R., Zhang, S., et al., Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea, Sci. China Life Sci., 2023, vol. 66, no. 5, pp. 1079—1091. https://doi.org/10.1007/s11427-022-2218-x

Article  PubMed  Google Scholar 

Tabrizian, P., Jibara, G., Shrager, B., et al., Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis, Ann. Surg., 2015, vol. 261, no. 5, pp. 947—955. https://doi.org/10.1097/SLA.0000000000000710

Article  PubMed  Google Scholar 

Shah, S.A., Cleary, S.P., Wei, A.C., et al., Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes, Surgery, 2007, vol. 141, no. 3, pp. 330—339. https://doi.org/10.1016/j.surg.2006.06.028

Article  PubMed  Google Scholar 

McLane, L.M., Abdel-Hakeem, M.S., and Wherry, E.J., CD8 T cell exhaustion during chronic viral infection and cancer, Annu. Rev. Immunol., 2019, vol. 37, pp. 457—495. https://doi.org/10.1146/annurev-immunol-041015-055318

Article  CAS  PubMed  Google Scholar 

Zander, R. and Cui, W., Exhausted CD8(+) T cells face a developmental fork in the road, Trends Immunol., 2023, vol. 44, no. 4, pp. 276—286. https://doi.org/10.1016/j.it.2023.02.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thommen, D.S. and Schumacher, T.N., T cell dysfunction in cancer, Cancer Cell, 2018, vol. 33, no. 4, pp. 547—562. https://doi.org/10.1016/j.ccell.2018.03.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wherry, E.J. and Kurachi, M., Molecular and cellular insights into T cell exhaustion, Nat. Rev. Immunol., 2015, vol. 15, no. 8, pp. 486—499. https://doi.org/10.1038/nri3862

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barsch, M., Salié, H., Schlaak, A.E., et al., T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma, J. Hepatol., 2022, vol. 77, no. 2, pp. 397—409. https://doi.org/10.1016/j.jhep.2022.02.032

Article  CAS  PubMed  Google Scholar 

Grinchuk, O.V., Yenamandra, S.P., Iyer, R., et al., Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma, Mol. Oncol., 2018, vol. 12, no. 1, pp. 89—113. https://doi.org/10.1002/1878-0261.12153

Article  CAS  PubMed  Google Scholar 

Zhang, Z., Chen, L., Chen, H., et al., Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy, eBioMedicine, 2022, vol. 83, p. 104207. https://doi.org/10.1016/j.ebiom.2022.104207

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie, M.E., Phipson, B., Wu, D., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 2015, vol. 43, no. 7, p. 20. https://doi.org/10.1093/nar/gkv007

Article  CAS  Google Scholar 

Huang da, W., Sherman, B.T., and Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 2009, vol. 4, no. 1, pp. 44—57. https://doi.org/10.1038/nprot.2008.211

Article  CAS  PubMed  Google Scholar 

Pan, X., Jin, X., Wang, J., et al., Placenta inflammation is closely associated with gestational diabetes mellitus, Am. J. Transl. Res., 2021, vol. 13, no. 5, pp. 4068—4079.

CAS  PubMed  PubMed Central  Google Scholar 

Shan, S., Chen, W., and Jia, J.D., Transcriptome analysis revealed a highly connected gene module associated with cirrhosis to hepatocellular carcinoma development, Front. Genet., 2019, vol. 10, p. 305. https://doi.org/10.3389/fgene.2019.00305

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayr, A. and Schmid, M., Boosting the concordance index for survival data—a unified framework to derive and evaluate biomarker combinations, PLoS One, 2014, vol. 9, no. 1, p. e84483. https://doi.org/10.1371/journal.pone.0084483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, B., Khodadoust, M.S., Liu, C.L., et al., Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 2018, vol. 1711, pp. 243—259. https://doi.org/10.1007/978-1-4939-7493-1_12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Ren, L., Yan, X., et al., Identification of immune-related lncRNAs in periodontitis reveals regulation network of gene-lncRNA-pathway-immunocyte, Int. Immunopharmacol., 2020, vol. 84, p. 106600. https://doi.org/10.1016/j.intimp.2020.106600

Article  CAS  PubMed  Google Scholar 

Yang, W., Soares, J., Greninger, P., et al., Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells, Nucleic Acids Res., 2013, vol. 41, database issue, p. 23. https://doi.org/10.1093/nar/gks1111

Song, X., Du, R., Gui, H., et al., Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis, Oncol. Rep., 2020, vol. 43, no. 1, pp. 133—146. https://doi.org/10.3892/or.2019.7400

Article  CAS  PubMed  Google Scholar 

Matsubara, E., Sakai, I., Yamanouchi, J., et al., The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation, J. Biol. Chem., 2009, vol. 284, no. 6, pp. 3480—3487. https://doi.org/10.1074/jbc.M805874200

Article  CAS  PubMed  Google Scholar 

Mega, T., Lupia, M., Amodio, N., et al., Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors, Cell Cycle, 2011, vol. 10, no. 13, pp. 2129—2139. https://doi.org/10.4161/cc.10.13.16045

Article  CAS  PubMed  Google Scholar 

Chiarella, E., Aloisio, A., Scicchitano, S., et al., ZNF521 represses osteoblastic differentiation in human adipose-derived stem cells, Int. J. Mol. Sci., 2018, vol. 19, no. 12, p. 4095. https://doi.org/10.3390/ijms19124095

Article  PubMed  PubMed Central  Google Scholar 

Chiarella, E., Aloisio, A., Codispoti, B., et al., ZNF521 has an inhibitory effect on the adipogenic differentiation of human adipose-derived mesenchymal stem cells, Stem Cell Rev. Rep., 2018, vol. 14, no. 6, pp. 901—914. https://doi.org/10.1007/s12015-018-9830-0

Article  CAS  PubMed  Google Scholar 

Garrison, B.S., Rybak, A.P., Beerman, I., et al., ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells, Blood, 2017, vol. 130, no. 5, pp. 619—624. https://doi.org/10.1182/blood-2016-09-738591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scicchitano, S., Giordano, M., Lucchino, V., et al., The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the sonic hedgehog pathway, Cell Death Dis., 2019, vol. 10, no. 10, p. 715. https://doi.org/10.1038/s41419-019-1946-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, N., Wang, L., Chen, T., et al., ZNF521 which is downregulated by miR-802 suppresses malignant progression of hepatocellular carcinoma through regulating Runx2 expression, J. Cancer, 2020, vol. 11, no. 19, pp. 5831—5839. https://doi.org/10.7150/jca.45190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, H.T., Zhong, H.T., Li, G.W., et al., Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer, J. Transl. Med., 2020, vol. 18, no. 1, p. 51. https://doi.org/10.1186/s12967-020-02240-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaffer, C.L., Marjanovic, N.D., Lee, T., et al., Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity, Cell, 2013, vol. 154, no. 1, pp. 61—74. https://doi.org/10.1016/j.cell.2013.06.005

Comments (0)

No login
gif