Ju, W., Zheng, R., Zhang, S., et al., Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea, Sci. China Life Sci., 2023, vol. 66, no. 5, pp. 1079—1091. https://doi.org/10.1007/s11427-022-2218-x
Tabrizian, P., Jibara, G., Shrager, B., et al., Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis, Ann. Surg., 2015, vol. 261, no. 5, pp. 947—955. https://doi.org/10.1097/SLA.0000000000000710
Shah, S.A., Cleary, S.P., Wei, A.C., et al., Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes, Surgery, 2007, vol. 141, no. 3, pp. 330—339. https://doi.org/10.1016/j.surg.2006.06.028
McLane, L.M., Abdel-Hakeem, M.S., and Wherry, E.J., CD8 T cell exhaustion during chronic viral infection and cancer, Annu. Rev. Immunol., 2019, vol. 37, pp. 457—495. https://doi.org/10.1146/annurev-immunol-041015-055318
Article CAS PubMed Google Scholar
Zander, R. and Cui, W., Exhausted CD8(+) T cells face a developmental fork in the road, Trends Immunol., 2023, vol. 44, no. 4, pp. 276—286. https://doi.org/10.1016/j.it.2023.02.006
Article CAS PubMed PubMed Central Google Scholar
Thommen, D.S. and Schumacher, T.N., T cell dysfunction in cancer, Cancer Cell, 2018, vol. 33, no. 4, pp. 547—562. https://doi.org/10.1016/j.ccell.2018.03.012
Article CAS PubMed PubMed Central Google Scholar
Wherry, E.J. and Kurachi, M., Molecular and cellular insights into T cell exhaustion, Nat. Rev. Immunol., 2015, vol. 15, no. 8, pp. 486—499. https://doi.org/10.1038/nri3862
Article CAS PubMed PubMed Central Google Scholar
Barsch, M., Salié, H., Schlaak, A.E., et al., T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma, J. Hepatol., 2022, vol. 77, no. 2, pp. 397—409. https://doi.org/10.1016/j.jhep.2022.02.032
Article CAS PubMed Google Scholar
Grinchuk, O.V., Yenamandra, S.P., Iyer, R., et al., Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma, Mol. Oncol., 2018, vol. 12, no. 1, pp. 89—113. https://doi.org/10.1002/1878-0261.12153
Article CAS PubMed Google Scholar
Zhang, Z., Chen, L., Chen, H., et al., Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy, eBioMedicine, 2022, vol. 83, p. 104207. https://doi.org/10.1016/j.ebiom.2022.104207
Article CAS PubMed PubMed Central Google Scholar
Ritchie, M.E., Phipson, B., Wu, D., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 2015, vol. 43, no. 7, p. 20. https://doi.org/10.1093/nar/gkv007
Huang da, W., Sherman, B.T., and Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 2009, vol. 4, no. 1, pp. 44—57. https://doi.org/10.1038/nprot.2008.211
Article CAS PubMed Google Scholar
Pan, X., Jin, X., Wang, J., et al., Placenta inflammation is closely associated with gestational diabetes mellitus, Am. J. Transl. Res., 2021, vol. 13, no. 5, pp. 4068—4079.
CAS PubMed PubMed Central Google Scholar
Shan, S., Chen, W., and Jia, J.D., Transcriptome analysis revealed a highly connected gene module associated with cirrhosis to hepatocellular carcinoma development, Front. Genet., 2019, vol. 10, p. 305. https://doi.org/10.3389/fgene.2019.00305
Article CAS PubMed PubMed Central Google Scholar
Mayr, A. and Schmid, M., Boosting the concordance index for survival data—a unified framework to derive and evaluate biomarker combinations, PLoS One, 2014, vol. 9, no. 1, p. e84483. https://doi.org/10.1371/journal.pone.0084483
Article CAS PubMed PubMed Central Google Scholar
Chen, B., Khodadoust, M.S., Liu, C.L., et al., Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 2018, vol. 1711, pp. 243—259. https://doi.org/10.1007/978-1-4939-7493-1_12
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., Ren, L., Yan, X., et al., Identification of immune-related lncRNAs in periodontitis reveals regulation network of gene-lncRNA-pathway-immunocyte, Int. Immunopharmacol., 2020, vol. 84, p. 106600. https://doi.org/10.1016/j.intimp.2020.106600
Article CAS PubMed Google Scholar
Yang, W., Soares, J., Greninger, P., et al., Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells, Nucleic Acids Res., 2013, vol. 41, database issue, p. 23. https://doi.org/10.1093/nar/gks1111
Song, X., Du, R., Gui, H., et al., Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis, Oncol. Rep., 2020, vol. 43, no. 1, pp. 133—146. https://doi.org/10.3892/or.2019.7400
Article CAS PubMed Google Scholar
Matsubara, E., Sakai, I., Yamanouchi, J., et al., The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation, J. Biol. Chem., 2009, vol. 284, no. 6, pp. 3480—3487. https://doi.org/10.1074/jbc.M805874200
Article CAS PubMed Google Scholar
Mega, T., Lupia, M., Amodio, N., et al., Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors, Cell Cycle, 2011, vol. 10, no. 13, pp. 2129—2139. https://doi.org/10.4161/cc.10.13.16045
Article CAS PubMed Google Scholar
Chiarella, E., Aloisio, A., Scicchitano, S., et al., ZNF521 represses osteoblastic differentiation in human adipose-derived stem cells, Int. J. Mol. Sci., 2018, vol. 19, no. 12, p. 4095. https://doi.org/10.3390/ijms19124095
Article PubMed PubMed Central Google Scholar
Chiarella, E., Aloisio, A., Codispoti, B., et al., ZNF521 has an inhibitory effect on the adipogenic differentiation of human adipose-derived mesenchymal stem cells, Stem Cell Rev. Rep., 2018, vol. 14, no. 6, pp. 901—914. https://doi.org/10.1007/s12015-018-9830-0
Article CAS PubMed Google Scholar
Garrison, B.S., Rybak, A.P., Beerman, I., et al., ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells, Blood, 2017, vol. 130, no. 5, pp. 619—624. https://doi.org/10.1182/blood-2016-09-738591
Article CAS PubMed PubMed Central Google Scholar
Scicchitano, S., Giordano, M., Lucchino, V., et al., The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the sonic hedgehog pathway, Cell Death Dis., 2019, vol. 10, no. 10, p. 715. https://doi.org/10.1038/s41419-019-1946-x
Article CAS PubMed PubMed Central Google Scholar
Yang, N., Wang, L., Chen, T., et al., ZNF521 which is downregulated by miR-802 suppresses malignant progression of hepatocellular carcinoma through regulating Runx2 expression, J. Cancer, 2020, vol. 11, no. 19, pp. 5831—5839. https://doi.org/10.7150/jca.45190
Article CAS PubMed PubMed Central Google Scholar
Wu, H.T., Zhong, H.T., Li, G.W., et al., Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer, J. Transl. Med., 2020, vol. 18, no. 1, p. 51. https://doi.org/10.1186/s12967-020-02240-z
Article CAS PubMed PubMed Central Google Scholar
Chaffer, C.L., Marjanovic, N.D., Lee, T., et al., Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity, Cell, 2013, vol. 154, no. 1, pp. 61—74. https://doi.org/10.1016/j.cell.2013.06.005
Comments (0)