Alu Polymorphisms of Autophagy and Apoptosis Regulatory Genes as Human Lifespan Factors

Mushkambarov, N.N., Gerontologiya in polemico, monografiya (Gerontology in Polemico, a Monography), Moscow: Meditsinskoe Informatsionnoe Agentstvo, 2011.

Chupakha, M.V., Belousova, O.N., and Sukhaterina, E.V., Characteristics of biological age and anthropometry in arterial hypertension against the background of metabolic syndrome in middle-aged and elderly patients, Sovrem. Probl. Zdravookhr. Med. Stat., 2024, no. 1, pp. 335—347. https://doi.org/10.24412/2312-2935-2024-1-335-347

Maier, H., Jeune, B., and Vaupel, J.W., Exceptional Lifespans, Springer-Verlag, 2021.

Book  Google Scholar 

Le Breton, A., Bettencourt, M.P., and Gendrel, A.V., Navigating the brain and aging: exploring the impact of transposable elements from health to disease, Front. Cell. Dev. Biol., 2024, vol. 12. https://doi.org/10.3389/fcell.2024.1357576

Maxwell, P.H., What might retrotransposons teach us about aging?, Curr. Genet., 2016, vol. 62, pp. 277—282. https://doi.org/10.1007/s00294-015-0538-2

Article  CAS  PubMed  Google Scholar 

Li, M., Schifanella, L., and Larsen, P.A., Alu retrotransposons and COVID-19 susceptibility and morbidity, Hum. Genomics, 2021, vol. 15, pp. 2—11. https://doi.org/10.1186/s40246-020-00299-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erdman, V.V., Karimov, D.D., Nasibullin, T.R., et al., The role of Alu polymorphism of the PLAT, PKHD1L1, STK38L, and TEAD1 genes in development of a longevity trait, Adv. Gerontol., 2017, vol. 107, no. 2, pp. 107—113. https://doi.org/10.1134/S2079057017020059

Article  Google Scholar 

Karimov, D.D., Erdman, V.V., Nasibullin, T.R., et al., Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: the analysis of association with longevity Russ. J. Genet., 2016, vol. 52, no. 10, pp. 1077—1085. https://doi.org/10.1134/S1022795416100033

Article  CAS  Google Scholar 

Erdman, V.V., Karimov, D.D., Tuktarova, I.A., et al., Alu deletions in LAMA2 and CDH4 genes are key components of polygenic predictors of longevity, Int. J. Mol. Sci., 2023, no. 21. https://doi.org/10.3390/ijms232113492

Wang, D., He, J., Huang, B., et al., Emerging role of the Hippo pathway in autophagy, Cell Death Dis., 2020, vol. 11, no. 10, p. 880. https://doi.org/10.1038/s41419-020-03069-6

Article  PubMed  PubMed Central  Google Scholar 

Zhou, Y.H., Huang, T.T., Cheng, A.S.L., et al., The TEAD family and its oncogenic role in promoting tumorigenesis, Int. J. Mol. Sci., 2016, vol. 17, no. 1, p. 138. https://doi.org/10.3390/ijms17010138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reed, M.J., Damodarasamy, M., and Banks, W.A., The extracellular matrix of the blood—brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease, Tissue Barriers, 2019, vol. 7, no. 4. https://doi.org/10.1080/21688370.2019.1651157

Carmignac, V., Svensson, M., Körner, Z., et al., Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A, Hum. Mol. Genet., 2011, vol. 20, no. 24, pp. 4891—4902. https://doi.org/10.1093/hmg/ddr427

Article  CAS  PubMed  Google Scholar 

Fard, D. and Tamagnone, L., Semaphorins in health and disease, Cytokine Growth Factor Rev., 2021, vol. 57, pp. 55—63. https://doi.org/10.1016/j.cytogfr.2020.05.006

Article  CAS  PubMed  Google Scholar 

Zhang, C., Hong, C.D., Wang, H.L., et al., The role of semaphorins in small vessels of the eye and brain, Pharmacol. Res., 2020, vol. 160. https://doi.org/10.1016/j.phrs.2020.105044

Kaushik, A., Parashar, S., Ambasta, R.K., and Kumar, P., Ubiquitin E3 ligases assisted technologies in protein degradation: sharing pathways in neurodegenerative disorders and cancer, Ageing Res. Rev., 2024, vol. 96, p. 102279. https://doi.org/10.1016/j.arr.2024.102279

Article  CAS  PubMed  Google Scholar 

Le, D., Brown, L., Malik, K., and Murakami, S., Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging, Int. J. Mol. Sci., 2021, vol. 22, no. 24. https://doi.org/10.3390/ijms222413178

Loos, R.J.F. and Yeo, G.S.H., The genetics of obesity: from discovery to biology, Nat. Rev. Genet., 2022, vol. 23, no. 2, pp. 120—133. https://doi.org/10.1038/s41576-021-00414-z

Article  CAS  PubMed  Google Scholar 

Yepes, M., The plasminogen activation system promotes neurorepair in the ischemic brain, Curr. Drug Targets, 2019, vol. 20, no. 9, pp. 953—959. https://doi.org/10.2174/1389450120666181211144550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Resink, T.J., Joshi, M.B., and Kyriakakis, E., Cadherins and cardiovascular disease, Swiss Med. Weekly, 2009, vol. 139, no. 0910, pp. 122—134.

CAS  Google Scholar 

Cordaux, R. and Batzer, M.A., The impact of retrotransposons on human genome evolution, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 691—703. https://doi.org/10.1038/nrg2640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nefedova, L.N. and Kim, A.I., The role of retroelements in the evolution of animal genomes, Biol. Bul. Rev., 2022, vol. 12, no. 1, pp. 29—40. https://doi.org/10.1134/S2079086422010042

Article  Google Scholar 

Davidson-Pilon, C., Lifelines: survival analysis in Python, J. Open Source Software, 2019, vol. 4, no. 40, p. 1317. https://doi.org/10.21105/joss.01317

Article  Google Scholar 

Cao, L., Li, H., Liu, X., et al., Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers, BMC Cancer, 2023, vol. 23, no. 1, p. 526. https://doi.org/10.1186/s12885-023-11007-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Zhang, L., Zhou, J., et al., Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy, Cell Proliferation, 2015, vol. 48, no. 3, pp. 338—347. https://doi.org/10.1111/cpr.12184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Ozaki, T., Kikuchi, H., et al., A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner, Oncogene, 2008, vol. 27, no. 26, pp. 3700—3709. https://doi.org/10.1038/sj.onc.1211032

Article  CAS  PubMed  Google Scholar 

Quiroga, M., Rodríguez-Alons, A., Alfonsín, G., et al., Protein degradation by E3 ubiquitin ligases in cancer stem cells, Cancers, 2022, vol. 14. https://doi.org/10.3390/cancers14040990

Huang, S.S., Hsu, L.J., and Chang, N.S., Functional role of WW domain-containing proteins in tumor biology and diseases: insight into the role in ubiquitin-proteasome system, FASEB Bioadv., 2020, vol. 2, pp. 234—253. https://doi.org/10.1096/fba.2019-00060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomboeva, D.E., Bragina, E.Y., Nazarenko, M.S., et al., The inverse comorbidity between oncological diseases and Huntington’s disease: review of epidemiological and biological evidence, Russ. J. Genet., 2020, vol. 56, no. 3, pp. 269—279. https://doi.org/10.1134/S1022795420030059

Article  CAS  Google Scholar 

Piccolo, S., Dupont, S., and Cordenonsi, M., The biology of YAP/TAZ: Hippo signaling and beyond, Physiol. Rev., 2014, vol. 94, no. 4, pp. 1287—1312. https://doi.org/10.1152/physrev.00005.2014

Article  CAS  PubMed  Google Scholar 

Ramaccini, D., Pedriali, G., Perrone, M., et al., Some insights into the regulation of cardiac physiology and pathology by the Hippo pathway, Biomedicines, 2022, vol. 10, no. 3, p. 726. https://doi.org/10.3390/biomedicines10030726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, K.C., Park, H.W., and Guan, K.L., Regulation of the Hippo pathway transcription factor TEAD, Trends Biochem. Sci., 2017, vol. 42, pp. 862—872. https://doi.org/10.1016/j.tibs.2017.09.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Ren, Y., Li, X., et al., A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: bridging molecular mechanisms to therapeutic insights, Int. J. Biol. Macromol., 2024, vol. 271, part 2. https://doi.org/10.1016/j.ijbiomac.2024.132473

Hergovich, A., The roles of NDR protein kinases in Hippo signalling, Genes, 2016, vol. 7, no. 5, p. 21. https://doi.org/10.3390/genes7050021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharif, A.A.D. and Hergovich, A., The NDR/LATS protein kinases in immunology and cancer biology, Semin. Cancer Biol., 2018, vol. 48, pp. 104—114.

Article  CAS  PubMed  Google Scholar 

Jonischkies, K., Del Angel, M., Demiray, Y.E., et al., The NDR family of kinases: essential regulators of aging, Front. Mol. Neurosci., 2024, vol. 17. https://doi.org/10.3389/fnmol.2024.1371086

Rawat, P., Thakur, S., Dogra, S., et al., Diet-induced induction of hepatic serine/threonine kinase STK38 triggers proinflammation and hepatic lipid accumulation, J. Biol. Chem., 2023, vol. 299, no. 5. https://doi.org/10.1016/j.jbc.2023.104678

Aman, Y., Schmauck-Medina, T., Hansen, M., et al., Autophagy in healthy aging and disease, Nat. Aging, 2021, vol. 1, no. 8, pp. 634—650.

Comments (0)

No login
gif