Mushkambarov, N.N., Gerontologiya in polemico, monografiya (Gerontology in Polemico, a Monography), Moscow: Meditsinskoe Informatsionnoe Agentstvo, 2011.
Chupakha, M.V., Belousova, O.N., and Sukhaterina, E.V., Characteristics of biological age and anthropometry in arterial hypertension against the background of metabolic syndrome in middle-aged and elderly patients, Sovrem. Probl. Zdravookhr. Med. Stat., 2024, no. 1, pp. 335—347. https://doi.org/10.24412/2312-2935-2024-1-335-347
Maier, H., Jeune, B., and Vaupel, J.W., Exceptional Lifespans, Springer-Verlag, 2021.
Le Breton, A., Bettencourt, M.P., and Gendrel, A.V., Navigating the brain and aging: exploring the impact of transposable elements from health to disease, Front. Cell. Dev. Biol., 2024, vol. 12. https://doi.org/10.3389/fcell.2024.1357576
Maxwell, P.H., What might retrotransposons teach us about aging?, Curr. Genet., 2016, vol. 62, pp. 277—282. https://doi.org/10.1007/s00294-015-0538-2
Article CAS PubMed Google Scholar
Li, M., Schifanella, L., and Larsen, P.A., Alu retrotransposons and COVID-19 susceptibility and morbidity, Hum. Genomics, 2021, vol. 15, pp. 2—11. https://doi.org/10.1186/s40246-020-00299-9
Article CAS PubMed PubMed Central Google Scholar
Erdman, V.V., Karimov, D.D., Nasibullin, T.R., et al., The role of Alu polymorphism of the PLAT, PKHD1L1, STK38L, and TEAD1 genes in development of a longevity trait, Adv. Gerontol., 2017, vol. 107, no. 2, pp. 107—113. https://doi.org/10.1134/S2079057017020059
Karimov, D.D., Erdman, V.V., Nasibullin, T.R., et al., Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: the analysis of association with longevity Russ. J. Genet., 2016, vol. 52, no. 10, pp. 1077—1085. https://doi.org/10.1134/S1022795416100033
Erdman, V.V., Karimov, D.D., Tuktarova, I.A., et al., Alu deletions in LAMA2 and CDH4 genes are key components of polygenic predictors of longevity, Int. J. Mol. Sci., 2023, no. 21. https://doi.org/10.3390/ijms232113492
Wang, D., He, J., Huang, B., et al., Emerging role of the Hippo pathway in autophagy, Cell Death Dis., 2020, vol. 11, no. 10, p. 880. https://doi.org/10.1038/s41419-020-03069-6
Article PubMed PubMed Central Google Scholar
Zhou, Y.H., Huang, T.T., Cheng, A.S.L., et al., The TEAD family and its oncogenic role in promoting tumorigenesis, Int. J. Mol. Sci., 2016, vol. 17, no. 1, p. 138. https://doi.org/10.3390/ijms17010138
Article CAS PubMed PubMed Central Google Scholar
Reed, M.J., Damodarasamy, M., and Banks, W.A., The extracellular matrix of the blood—brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease, Tissue Barriers, 2019, vol. 7, no. 4. https://doi.org/10.1080/21688370.2019.1651157
Carmignac, V., Svensson, M., Körner, Z., et al., Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A, Hum. Mol. Genet., 2011, vol. 20, no. 24, pp. 4891—4902. https://doi.org/10.1093/hmg/ddr427
Article CAS PubMed Google Scholar
Fard, D. and Tamagnone, L., Semaphorins in health and disease, Cytokine Growth Factor Rev., 2021, vol. 57, pp. 55—63. https://doi.org/10.1016/j.cytogfr.2020.05.006
Article CAS PubMed Google Scholar
Zhang, C., Hong, C.D., Wang, H.L., et al., The role of semaphorins in small vessels of the eye and brain, Pharmacol. Res., 2020, vol. 160. https://doi.org/10.1016/j.phrs.2020.105044
Kaushik, A., Parashar, S., Ambasta, R.K., and Kumar, P., Ubiquitin E3 ligases assisted technologies in protein degradation: sharing pathways in neurodegenerative disorders and cancer, Ageing Res. Rev., 2024, vol. 96, p. 102279. https://doi.org/10.1016/j.arr.2024.102279
Article CAS PubMed Google Scholar
Le, D., Brown, L., Malik, K., and Murakami, S., Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging, Int. J. Mol. Sci., 2021, vol. 22, no. 24. https://doi.org/10.3390/ijms222413178
Loos, R.J.F. and Yeo, G.S.H., The genetics of obesity: from discovery to biology, Nat. Rev. Genet., 2022, vol. 23, no. 2, pp. 120—133. https://doi.org/10.1038/s41576-021-00414-z
Article CAS PubMed Google Scholar
Yepes, M., The plasminogen activation system promotes neurorepair in the ischemic brain, Curr. Drug Targets, 2019, vol. 20, no. 9, pp. 953—959. https://doi.org/10.2174/1389450120666181211144550
Article CAS PubMed PubMed Central Google Scholar
Resink, T.J., Joshi, M.B., and Kyriakakis, E., Cadherins and cardiovascular disease, Swiss Med. Weekly, 2009, vol. 139, no. 0910, pp. 122—134.
Cordaux, R. and Batzer, M.A., The impact of retrotransposons on human genome evolution, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 691—703. https://doi.org/10.1038/nrg2640
Article CAS PubMed PubMed Central Google Scholar
Nefedova, L.N. and Kim, A.I., The role of retroelements in the evolution of animal genomes, Biol. Bul. Rev., 2022, vol. 12, no. 1, pp. 29—40. https://doi.org/10.1134/S2079086422010042
Davidson-Pilon, C., Lifelines: survival analysis in Python, J. Open Source Software, 2019, vol. 4, no. 40, p. 1317. https://doi.org/10.21105/joss.01317
Cao, L., Li, H., Liu, X., et al., Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers, BMC Cancer, 2023, vol. 23, no. 1, p. 526. https://doi.org/10.1186/s12885-023-11007-w
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Zhang, L., Zhou, J., et al., Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy, Cell Proliferation, 2015, vol. 48, no. 3, pp. 338—347. https://doi.org/10.1111/cpr.12184
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Ozaki, T., Kikuchi, H., et al., A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner, Oncogene, 2008, vol. 27, no. 26, pp. 3700—3709. https://doi.org/10.1038/sj.onc.1211032
Article CAS PubMed Google Scholar
Quiroga, M., Rodríguez-Alons, A., Alfonsín, G., et al., Protein degradation by E3 ubiquitin ligases in cancer stem cells, Cancers, 2022, vol. 14. https://doi.org/10.3390/cancers14040990
Huang, S.S., Hsu, L.J., and Chang, N.S., Functional role of WW domain-containing proteins in tumor biology and diseases: insight into the role in ubiquitin-proteasome system, FASEB Bioadv., 2020, vol. 2, pp. 234—253. https://doi.org/10.1096/fba.2019-00060
Article CAS PubMed PubMed Central Google Scholar
Gomboeva, D.E., Bragina, E.Y., Nazarenko, M.S., et al., The inverse comorbidity between oncological diseases and Huntington’s disease: review of epidemiological and biological evidence, Russ. J. Genet., 2020, vol. 56, no. 3, pp. 269—279. https://doi.org/10.1134/S1022795420030059
Piccolo, S., Dupont, S., and Cordenonsi, M., The biology of YAP/TAZ: Hippo signaling and beyond, Physiol. Rev., 2014, vol. 94, no. 4, pp. 1287—1312. https://doi.org/10.1152/physrev.00005.2014
Article CAS PubMed Google Scholar
Ramaccini, D., Pedriali, G., Perrone, M., et al., Some insights into the regulation of cardiac physiology and pathology by the Hippo pathway, Biomedicines, 2022, vol. 10, no. 3, p. 726. https://doi.org/10.3390/biomedicines10030726
Article CAS PubMed PubMed Central Google Scholar
Lin, K.C., Park, H.W., and Guan, K.L., Regulation of the Hippo pathway transcription factor TEAD, Trends Biochem. Sci., 2017, vol. 42, pp. 862—872. https://doi.org/10.1016/j.tibs.2017.09.003
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., Ren, Y., Li, X., et al., A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: bridging molecular mechanisms to therapeutic insights, Int. J. Biol. Macromol., 2024, vol. 271, part 2. https://doi.org/10.1016/j.ijbiomac.2024.132473
Hergovich, A., The roles of NDR protein kinases in Hippo signalling, Genes, 2016, vol. 7, no. 5, p. 21. https://doi.org/10.3390/genes7050021
Article CAS PubMed PubMed Central Google Scholar
Sharif, A.A.D. and Hergovich, A., The NDR/LATS protein kinases in immunology and cancer biology, Semin. Cancer Biol., 2018, vol. 48, pp. 104—114.
Article CAS PubMed Google Scholar
Jonischkies, K., Del Angel, M., Demiray, Y.E., et al., The NDR family of kinases: essential regulators of aging, Front. Mol. Neurosci., 2024, vol. 17. https://doi.org/10.3389/fnmol.2024.1371086
Rawat, P., Thakur, S., Dogra, S., et al., Diet-induced induction of hepatic serine/threonine kinase STK38 triggers proinflammation and hepatic lipid accumulation, J. Biol. Chem., 2023, vol. 299, no. 5. https://doi.org/10.1016/j.jbc.2023.104678
Aman, Y., Schmauck-Medina, T., Hansen, M., et al., Autophagy in healthy aging and disease, Nat. Aging, 2021, vol. 1, no. 8, pp. 634—650.
Comments (0)