GBD 2021 Osteoarthritis Collaborators, Global, regional, and national burden of osteoarthritis, 1990—2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet Rheumatol., 2023, vol. 5, pp. e508—e522. https://doi.org/10.1016/S2665-9913(23)00163-7
Boer, C.G., Hatzikotoulas, K., Southam, L., et al., Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations, Cell, 2021, vol. 184, pp. 4784—4818. https://doi.org/10.1016/j.cell.2021.07.038
Article CAS PubMed PubMed Central Google Scholar
Faber, B.G., Frysz, M., Boer, C.G., et al., The identification of distinct protective and susceptibility mechanisms for hip osteoarthritis: findings from a genome-wide association study meta-analysis of minimum joint space width and Mendelian randomisation cluster analyses, eBioMedicine, 2023, vol. 95. https://doi.org/10.1016/j.ebiom.2023.104759
Chen, X., Wu, Q., Cao, X., et al., Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis, Int. Immunopharmacol., 2022, vol. 112. https://doi.org/10.1016/j.intimp.2022.109228
Jiang, Y., Shen, Y., Ding, L., et al., Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis, BMC Musculoskeleton Disord., 2021, vol. 22, p. 1008. https://doi.org/10.1186/s12891-021-04894-2
Allen, K.D., Thoma, L.M., and Golightly, Y.M., Epidemiology of osteoarthritis, Osteoarthritis Cartilage, 2022, vol. 30, pp. 184—195. https://doi.org/10.1016/j.joca.2021.04.020
Article CAS PubMed Google Scholar
Vos, T., Flaxman, A.D., Naghavi, M., et al., Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990—2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet, 2012, vol. 380. pp. 2163—2196. https://doi.org/10.1016/S0140-6736(12)61729-2
Article PubMed PubMed Central Google Scholar
De Cecco, M., Ito, T., Petrashen, A.P., et al., L1 drives IFN in senescent cells and promotes age-associated inflammation, Nature, 2019, vol. 566, pp. 73—78.
Article CAS PubMed Google Scholar
Gorbunova, V., Seluanov, A., Mita, P., et al., The role of retrotransposable elements in ageing and age-associated diseases, Nature, 2021, vol. 596, pp. 43—53. https://doi.org/10.1038/s41586-021-03542-y
Article CAS PubMed PubMed Central Google Scholar
Bendiksen, S., Martinez-Zubiavrra, I., Tümmler, C., et al., Human endogenous retrovirus W activity in cartilage of osteoarthritis patients, Biomed. Res. Int., 2014, vol. 2014. https://doi.org/10.1155/2014/698609
Teerawattanapong, N., Udomsinprasert, W., Ngarmukos, S., et al., Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis, Heliyon, 2019, vol. 5. https://doi.org/10.1016/j.heliyon.2019.e01774
Lee, D.H., Bae, W.H., Ha, H., et al., The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p, Sci. Rep., 2024, vol. 14, p. 4723. https://doi.org/10.1038/s41598-024-55332-x
Article CAS PubMed PubMed Central Google Scholar
Conley, A.B. and Jordan, I.K., Cell type-specific termination of transcription by transposable element sequences, Mob. DNA, 2012, vol. 3, p. 15. https://doi.org/10.1186/1759-8753-3-15
Article CAS PubMed PubMed Central Google Scholar
Daniel, C., Behm, M., and Öhman, M., The role of Alu elements in the cis-regulation of RNA processing, Cell. Mol. Life Sci., 2015, vol. 72, pp. 4063—4076. https://doi.org/10.1007/s00018-015-1990-3
Article CAS PubMed PubMed Central Google Scholar
Wei, G., Qin, S., Li, W., et al., MDTE DB: a database for microRNAs derived from transposable element, IEEE/ACM Trans. Comput. Biol. Bioinf., 2016, vol. 13, pp. 1155—1160. https://doi.org/10.1109/TCBB.2015.2511767
Chen, J., Chen, S., Cai, D., et al., The role of Sirt6 in osteoarthritis and its effect on macrophage polarization, Bioengineered, 2022, vol. 13, pp. 9677—9689. https://doi.org/10.1080/21655979.2022.2059610
Article CAS PubMed PubMed Central Google Scholar
van Meter, M., Kashyap, M., Rezazadeh, S., et al., SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age, Nat. Commun., 2014, vol. 5, p. 5011. https://doi.org/10.1038/ncomms6011
Article CAS PubMed Google Scholar
Zhou, F., Mei, J., Han, X., et al., Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF- κ B/MAPK signaling and protecting chondrocytes, Acta. Pharm. Sin. B, 2019, vol. 9, pp. 973—985. https://doi.org/10.1016/j.apsb.2019.01.015
Article PubMed PubMed Central Google Scholar
Saetan, N., Honsawek, S., Tanavalee, S., et al., Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis, Clin. Biochem., 2011, vol. 44, pp. 1218—1222. https://doi.org/10.1016/j.clinbiochem.2011.07.010
Article CAS PubMed Google Scholar
Mustafin, R.N. and Khusnutdinova, E.K., Non-coding parts of genomes as the basis of epigenetic heredity, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, no. 6, pp. 742—749.
Lu, F., Liu, P., Zhang, Q., et al., Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: a meta-analysis based on case—control studies, J. Orthop. Surg. Res., 2019, vol. 14, p. 445. https://doi.org/10.1186/s13018-019-1495-0
Article PubMed PubMed Central Google Scholar
Budhiparama, N.C., Lumban-Gaol, I., and Sudoyo, H., Interleukin-1 genetic polymorphisms in knee osteoarthritis: what do we know? A meta-analysis and systematic review, J. Orthop. Surg. (Hong Kong), 2022, vol. 30. https://doi.org/10.1177/23094990221076652
Deng, X., Ye, K., Tang, J., and Huang, Y., Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: evidence from a meta-analysis, Nucleosides Nucleotides Nucleic Acids, 2023, vol. 42, pp. 328—342. https://doi.org/10.1080/15257770.2022.2147541
Article CAS PubMed Google Scholar
Rodriguez-Fontenla, C., Calaza, M., Evangelou, E., et al., Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies, Arthritis Rheumatol., 2014, vol. 66, pp. 940—949. https://doi.org/10.1002/art.38300
Article CAS PubMed PubMed Central Google Scholar
Liu, Y., Lu, T., Liu, Z., et al., Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.936606
Yang, L., Chen, Z., Guo, H., et al., Extensive cytokine analysis in synovial fluid of osteoarthritis patients, Cytokine, 2021, vol. 143. https://doi.org/10.1016/j.cyto.2021.155546
Pan, L., Yang, F., Cao, X., et al., Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis, Front. Endocrinol. (Lausanne), 2023, vol. 14. https://doi.org/10.3389/fendo.2023.1144258
Xu, J., Chen, K., Yu, Y., et al., Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning, J. Pers. Med., 2023, vol. 13, p. 367. https://doi.org/10.3390/jpm13020367
Article PubMed PubMed Central Google Scholar
Cheng, P., Gong, S., Guo, C., et al., Exploration of effective biomarkers and infiltrating immune cells in osteoarthritis based on bioinformatics analysis, Artif. Cells Nanomed. Biotechnol., 2023, vol. 51, pp. 242—254. https://doi.org/10.1080/21691401.2023.2185627
Article CAS PubMed Google Scholar
Li, J., Wang, G., Xv, X., et al., Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning, Front. Immunol., 2023, vol. 14. https://doi.org/10.3389/fimmu.2023.1134412
Grandi, F.C. and Bhutani, N., Epigenetic therapies for osteoarthritis, Trends Pharmacol. Sci., 2020, vol. 41, pp. 557—569. https://doi.org/10.1016/j.tips.2020.05.008
Article CAS PubMed PubMed Central Google Scholar
Knights, A.J., Redding, S.J., and Maerz, T., Inflammation in osteoarthritis: the latest progress and ongoing challenges, Curr. Opin. Rheumatol., 2023, vol. 35, pp. 128—134.
Zhang, J., Zhang, S., Zhou, Y., et al., KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration, J. Orthop. Surg. Res., 2022, vol. 17, p. 365. https://doi.org/10.1186/s13018-022-03247-6
Article CAS PubMed PubMed Central Google Scholar
Zhang, Q., Sun, C., Liu, X., et al., Mechanism of immune infiltration in synovial tissue of osteoarthritis: a gene expression-based study, J. Orthop. Surg. Res., 2023, vol. 18, p. 58. https://doi.org/10.1186/s13018-023-03541-x
Article CAS PubMed PubMed Central Google Scholar
Xia, D., Wang, J., Yang, S., et al., Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies, Medicine (Baltimore), 2023, vol. 102. https://doi.org/10.1097/MD.0000000000035355
Xu, L., Wang, Z., and Wang, G., Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies, Int. J. Gen. Med., 2024, vol. 17, pp. 205—224. https://doi.org/10.2147/IJGM.S447035
Comments (0)