Fried NM, Irby PB (2018) Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol. https://doi.org/10.1038/s41585-018-0035-8
Andreeva V, Vinarov A, Yaroslavsky I et al (2020) Preclinical comparison of superpulse thulium fiber laser and a Holmium:YAG laser for lithotripsy. World J Urol. https://doi.org/10.1007/s00345-019-02785-9
Hardy LA, Vinnichenko V, Fried NM (2019) High power Holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med. https://doi.org/10.1002/lsm.23057
Sierra A, Corrales M, Somani B, Traxer O (2022) Laser efficiency and laser safety: Holmium YAG vs. thulium fiber laser. J Clin Med. https://doi.org/10.3390/jcm12010149
Article PubMed PubMed Central Google Scholar
Panthier F, Germain T, Gorny C et al (2021) Laser fiber displacement velocity during Tm-fiber and Ho:YAG laser lithotripsy: introducing the concept of optimal displacement velocity. J Clin Med. https://doi.org/10.3390/jcm11010181
Article PubMed PubMed Central Google Scholar
Ventimiglia E, Doizi S, Kovalenko A et al (2020) Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using Holmium:YAG and super-pulse thulium fibre lasers. BJU. https://doi.org/10.1111/bju.15079
Haas CR, Knoedler MA, Li S et al (2023) Pulse-modulated Holmium:YAG laser vs the thulium fiber laser for renal and ureteral stones: a single-center prospective randomized clinical trial. J Urol. https://doi.org/10.1097/JU.0000000000003050
Terry RS, Ho DS et al (2022) Comparison of different pulse modulation modes for holmium: yttrium-aluminum- garnet laser lithotripsy ablation in benchtop model. J Endourol. https://doi.org/10.1089/end.2021.0113
Article PubMed PubMed Central Google Scholar
Soto-Palou F, Chen J et al (2023) In pursuit of the optimal dusting settings with the thulium fiber laser: an in vitro assessment. JEndourology. https://doi.org/10.1089/end.2023.0168
U.S. Food & Drug Administration (FDA). Class 2 Device Recall Olympus (2021) Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=188172
Sierra A, Corrales M, Piñero A et al (2022) Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol. https://doi.org/10.1007/s00345-022-03966-9
Fried NM, Murray KE (2005) High-power thulium fiber laser ablation of urinary tissues at 1.94 microm. J Endourol. https://doi.org/10.1089/end.2005.19.25
Jansen ED, van Leeuwen TG, Motamedi M et al (1994) Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg Med. https://doi.org/10.1002/lsm.1900140308
Aldoukhi AH, Hall TL, Ghani KR et al (2021) Strike rate: analysis of laser fiber to stone distance during different modes of laser lithotripsy. J Endourol. https://doi.org/10.1089/end.2020.0298
Article PubMed PubMed Central Google Scholar
Aldoukhi AH, Roberts WW et al (2019) Watch your distance: the role of laser fiber working distance on fragmentation when altering pulse width or modulation. J Endourol. https://doi.org/10.1089/end.2018.0572
Article PubMed PubMed Central Google Scholar
Schindelin J, Arganda-Carreras I et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods. https://doi.org/10.1038/nmeth.2019
Article PubMed PubMed Central Google Scholar
Forster B, Van De Ville D, et al (2004) Extended Depth-of-Focus for Multi-Channel Microscopy Images: A Complex Wavelet Approach. 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821). https://doi.org/10.1109/ISBI.2004.1398624
Hardy LA, Kennedy JD et al (2017) Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. J Biophotonics. https://doi.org/10.1002/jbio.201600010
Chen J, Mishra A et al (2023) In vitro investigation of stone abaltion efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser. Urolithiasis. https://doi.org/10.1007/s00240-023-01501-y
Article PubMed PubMed Central Google Scholar
Mishra A, Medairos R et al (2024) Exploring optimal settings for safe and effective thulium fiber laser lithotripsy in a kidney model. BJU. https://doi.org/10.1111/bju.16218
Yang B, Ray A, Zhang JJ et al (2023) Stone ablation efficacy: a comparison of a thulium fibre laser and two pulse-modulated Holmium:YAG lasers. Urolithiasis. https://doi.org/10.1007/s00240-022-01393-4
Article PubMed PubMed Central Google Scholar
Robinson JW, Ghani KR, Roberts WW et al (2023) Near-infrared absorption coefficients in kidney stone minerals and their relation to crystal structure. J Phys Chem C Nanomater Interfaces. https://doi.org/10.1021/acs.jpcc.2c07475
Article PubMed PubMed Central Google Scholar
Para SA, Wani SM et al (2023) S Incidence of ureteric strictures following ureteroscopic laser lithotripsy: Holmium:YAG versus thulium fiber laser. Urol Res Pract. https://doi.org/10.5152/tud.2023.22264
Comments (0)