Differential effects of high-frequency repetitive transcranial magnetic stimulation over the left and right dorsolateral prefrontal cortex for post-stroke cognitive impairment

GBD 2015 Mortality and Causes of Death Collaborators (2015) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study. Lancet Lond Engl 2016;388(10053):1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

Snyder HM, Corriveau RA, Craft S et al (2015)Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 11(6):710–717. https://doi.org/10.1016/j.jalz.2014.10.008

Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2(3):145–156. https://doi.org/10.1016/s1474-4422(03)00321-1

Article  PubMed  Google Scholar 

Wang WC, Wing EA, Murphy DLK et al (2018)Excitatory TMS modulates memory representations. Cogn Neurosci 9(3–4):151–166. https://doi.org/10.1080/17588928.2018.1512482

Wu X, Wang L, Geng Z et al (2021) Improved cognitive promotion through accelerated magnetic stimulation. eNeuro 8(1):ENEURO0392–202020. https://doi.org/10.1523/ENEURO.0392-20.2020

Article  Google Scholar 

Wilson MT, Fulcher BD, Fung PK et al (2018) Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation. Clin Neurophysiol Jun 129(6):1230–1241 Epub 2018 Apr 5. https://doi.org/10.1016/j.clinph.2018.03.018

Article  Google Scholar 

Webler RD, Fox J, McTeague LM et al (2022) DLPFC stimulation alters working memory related activations and performance: an interleaved TMS-fMRI study. Brain Stimulat 15(3):823–832. https://doi.org/10.1016/j.brs.2022.05.014

Article  Google Scholar 

Cha B, Kim J, Kim JM et al (2022) Therapeutic effect of repetitive transcranial magnetic stimulation for Post-stroke vascular cognitive impairment: A prospective pilot study. Front Neurol 13:813597. https://doi.org/10.3389/fneur.2022.813597

Article  PubMed  PubMed Central  Google Scholar 

Ding QF, Li Z, Guo GH et al (2019) Effects of repetitive transcranial magnetic stimulation with different frequencies on patients with post-stroke cognitive impairment. Chin J Rehab 34(10):513–517. https://doi.org/10.3870/zgkf.2019.010.002

Article  Google Scholar 

Peng B, Wu B (2018) Chinese guidelines for diagnosis and treatment of acute ischemic stroke. Chin J Neurol 51(9):666682. https://doi.org/10.3760/cma.j.issn.1006-7876.2018.09.004

Article  Google Scholar 

Neurology Branch of Chinese Medical Association, Cerebrovascular Disease Group of Neurology Branch of Chinese Medical Association (2019) [Guidelines for the diagnosis and treatment of intracerebral hemorrhage in China (2019)]. Chin J Neurol 52(12):994–1005. https://doi.org/10.3760/cma.j.issn.10067876.2019.12.003

Article  Google Scholar 

Pan P, Zhu L, Yu T et al (2017) Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Res Rev 35:12–21. https://doi.org/10.1016/j.arr.2016.12.001

Article  PubMed  Google Scholar 

Askenasy JJ, Rahmani L (1987) Neuropsycho-social rehabilitation of head injury. Am J Phys Med PMID 66(6):315–327

CAS  Google Scholar 

Qiang J, Geng Y, Wang MW (2012) Neuropathologic changes and cognitive decline in normative brain aging. J Int Neurology and Neurosurgery 2012;39(5):464–467. https://doi.org/10.16636/j.cnki.jinn.2012.05.017

Zhou PL, Yuan HW, Ji RJ et al (2016) Symptomatologic typing of cognitive deficits in patients in the acute phase of ischemic stroke. Chin J Cerebrovasc Dis 13(6):281–286. https://doi.org/10.3969/j.issn.1672-5921.2016.06.001

Article  Google Scholar 

Bowren M, Bruss J, Manzel K et al (2022) Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain J Neurol 145(4):1338–1353. https://doi.org/10.1093/brain/awac010

Article  Google Scholar 

Rost NS, Meschia JF, Gottesman R et al (2021) Cognitive impairment and dementia after stroke: design and rationale for the DISCOVERY study. Stroke 52(8):e499–e516. https://doi.org/10.1161/STROKEAHA.120.031611

Article  PubMed  PubMed Central  Google Scholar 

Xu M, Li Y, Zhang C et al (2023) Efficacy of scalp stimulation for multidomain cognitive impairment in patients with post-stroke cognitive impairment and dementia: A network meta-analysis and meta-regression of moderators. J Evid-Based Med 16(4):505–519. https://doi.org/10.1111/jebm.12568

Article  PubMed  Google Scholar 

May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci Oct 15(10):475–482. https://doi.org/10.1016/j.tics.2011.08.002

Article  Google Scholar 

De Roo M, Klauser P, Muller D (2008) LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biol Sep 9(9):e219. https://doi.org/10.1371/journal.pbio.0060219

Article  CAS  Google Scholar 

Bashir S, Uzair M, Abualait T et al (2022) Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 25(4):109. https://doi.org/10.3892/mmr.2022.12625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Dong G, Wang L (2020) High - frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer’s disease progress by reducing APOE and enhancing autophagy. Brain Behav 10(8):e01740

Article  PubMed  PubMed Central  Google Scholar 

Wang JX, Voss JL (2015) Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus Aug 25(8):877–883 Epub 2015 Feb 11. https://doi.org/10.1002/hipo.22416

Article  Google Scholar 

Guo F, Lou J, Han X et al(2017) Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke. Front Physiol 8:559.

Anticevic A, Cole MW, Murray JD et al (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16(12):584–592. https://doi.org/10.1016/j.tics.2012.10.008

Article  PubMed  PubMed Central  Google Scholar 

Bigliassi M, Filho E (2022) Functional significance of the dorsolateral prefrontal cortex during exhaustive exercise. Biol Psychol 175:108442. https://doi.org/10.1016/j.biopsycho.2022.108442

Article  PubMed  Google Scholar 

Kaiser RH, Andrews-Hanna JR, Wager TD et al (2015) Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry 72(6):603–611. https://doi.org/10.1001/jamapsychiatry.2015.0071

Motes MA, Yezhuvath US, Aslan S et al (2018) Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial. Neurobiol Aging 62:72–81. https://doi.org/10.1016/j.neurobiolaging.2017.10.003

Article  PubMed  Google Scholar 

Liu Y, Yin M, Luo J et al (2020) Effects of transcranial magnetic stimulation on the performance of the activities of daily living and attention function after stroke: a randomized controlled trial. Clin Rehabil 34(12):1465–1473. https://doi.org/10.1177/0269215520946386

Article  PubMed  Google Scholar 

Li Y, Luo H, Yu Q et al (2020) Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study. Front Neurol 11:977. https://doi.org/10.3389/fneur.2020.00977

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharjee S, Kashyap R, Abualait T et al (2021) The role of primary motor cortex: more than movement execution. J Mot Behav 53(2):258–274. https://doi.org/10.1080/00222895.2020.1738992

Article  PubMed  Google Scholar 

Di Lorenzo F, Bonnì S, Picazio S,et al(2020). Effects of cerebellar theta burst stimulation on contralateral motor cortex excitability in patients with Alzheimer's disease. Brain Topogr 33(5):613–617. https://doi.org/10.1016/j.neuroscience.2023.03.006

Article  CAS  Google Scholar 

Watanabe T, Chen X, Yunoki K, et al(2023) Differential Effects of Transcranial Static Magnetic Stimulation Over Left and Right Dorsolateral Prefrontal Cortex on Brain Oscillatory Responses During a Working Memory Task. Neuroscience 517:50-60. https://doi.org/10.1016/j.neuroscience.2023.03.006

Article  CAS  PubMed  Google Scholar 

Chen SZ, Zhang BF, Zhao JL, et al (2010) Component analysis of higher brain functions during balance regulation in stroke patients. Chin J Rehabilitation Med 25(2):139–144. https://doi.org/10.3969/j.issn.1001-1242.2010.02.010

Article  Google Scholar 

Webler RD, Fox J, McTeague LM, et al (2022) DLPFC stimulation alters working memory related activations and performance: An interleaved TMS-fMRI study. Brain Stimulat 15(3):823–832. https://doi.org/10.3969/j.issn.1673-8225.2009.26.022

Article  Google Scholar 

Sun YA, He XB, Miao ZC, et al (2009) Magnetic resonance spectroscopy analysis of changes in the hippocampus of patients with mild cognitive impairment. Chin J Tissue Engineering Research 13(26):5098–5103. https://doi.org/10.1016/j.ijpsycho.2014.02.005

Article  Google Scholar 

Valdés-Conroy B, Aguado L, Fernández-Cahill M, et al (2014) Following the time course of face gender and expression processing: a task-dependent ERP study. Int J Psychophysiol Off J Int Organ Psychophysiol 92(2):59–66. https://doi.org/10.1016/j.ijpsycho.2014.02.005

Google Scholar 

Egerházi A, Glaub T, Balla P, et al (2008) P300 in mild cognitive impairment and in dementia. Psychiatr Hung Magy Pszichiatriai Tarsasag Tudomanyos Folyoirata 23(5):349–357

Comments (0)

No login
gif