Differentiated muscle cells of salamander re-enter the cell cycle

Bačević K, Lossaint G, Achour TN, Georget V, Fisher D, Dulić V (2017) Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep. https://doi.org/10.1038/s41598-017-12868-5

Article  PubMed  PubMed Central  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, K-iT S, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A (2025) Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. Cell Genomics. https://doi.org/10.1016/j.xgen.2025.100761

Article  PubMed  PubMed Central  Google Scholar 

Cai H, Peng Z, Ren R, Wang H (2019) Efficient gene disruption via base editing induced stop in newt Pleurodeles waltl. Genes. https://doi.org/10.3390/genes10110837

Article  PubMed  PubMed Central  Google Scholar 

Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22(1):103–116. https://doi.org/10.1247/csf.22.103

Article  CAS  PubMed  Google Scholar 

Chiba C, Hoshino A, Nakamura K, Susaki K, Yamano Y, Kaneko Y, Kuwata O, Maruo F, Saito T (2006) Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt. J Comp Neurol 495(4):391–407. https://doi.org/10.1002/cne.20880

Article  CAS  PubMed  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

Article  CAS  PubMed  Google Scholar 

Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millan JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384. https://doi.org/10.1038/ncomms1389

Article  CAS  PubMed  Google Scholar 

Ferretti P, Brockes JP (1988) Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool 247(1):77–91. https://doi.org/10.1002/jez.1402470111

Article  CAS  PubMed  Google Scholar 

Hasan MM, Sekiya R, Li TS (2023) Ex vivo expansion of primary cells from limb tissue of Pleurodeles waltl. Dev Growth Differ 65(5):255–265. https://doi.org/10.1111/dgd.12866

Article  CAS  PubMed  Google Scholar 

Ishii K, Suzuki N, Mabuchi Y, Sekiya I, Akazawa C (2017) Technical advantage of recombinant collagenase for isolation of muscle stem cells. Regen Ther 7:1–7. https://doi.org/10.1016/j.reth.2017.06.001

Article  PubMed  PubMed Central  Google Scholar 

Joven A, Elewa A, Simon A (2019) Model systems for regeneration: salamanders. Development. https://doi.org/10.1242/dev.167700

Article  PubMed  PubMed Central  Google Scholar 

Keefe JR (1973) An analysis of urodelian retinal regeneration. I. Studies of the cellular source of retinal regeneration in Notophthalmus viridescens utilizing 3H-thymidine and colchicine. J Exp Zool 184(2):185–206. https://doi.org/10.1002/jez.1401840206

Article  CAS  PubMed  Google Scholar 

Kim KH, Qiu J, Kuang S (2020) Isolation, culture, and differentiation of primary myoblasts derived from muscle satellite cells. Bio Protoc 10(14):e3686. https://doi.org/10.21769/BioProtoc.3686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau E, Zhu C, Abraham RT, Jiang W (2006) The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 7(4):425–430. https://doi.org/10.1038/sj.embor.7400624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao Y, Peng Z, Fu S, Hua Y, Luo W, Liu R, Chen Y, Gu W, Zhao P, Zhao J, Wang Y, Wang H (2024) Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation. J Adv Res. https://doi.org/10.1016/j.jare.2024.12.046 

Article  PubMed  PubMed Central  Google Scholar 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li BJ, Li PH, Huang RH, Sun WX, Wang H, Li QF, Chen J, Wu WJ, Liu HL (2015) Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci 28(8):1171–1177. https://doi.org/10.5713/ajas.14.0848

Article  PubMed  PubMed Central  Google Scholar 

Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29(1):1–19. https://doi.org/10.1002/cm.970290102

Article  CAS  PubMed  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H (2022) Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis. https://doi.org/10.1038/s41419-022-05284-9

Article  PubMed  PubMed Central  Google Scholar 

Ma T, Ren R, Lv J, Yang R, Zheng X, Hu Y, Zhu G, Wang H (2024) Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition. Elife. https://doi.org/10.7554/eLife.93220

Article  PubMed  PubMed Central  Google Scholar 

Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F (2022) Analysing high-throughput sequencing data in Python with HTSeq 20. Bioinformatics 38(10):2943–2945. https://doi.org/10.1093/bioinformatics/btac166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren R, Fan Y, Peng Z, Wang S, Jiang Y, Fu L, Cao J, Zhao S, Wang H (2022) Characterization and perturbation of CTCF-mediated chromatin interactions for enhancing myogenic transdifferentiation. Cell Rep. https://doi.org/10.1016/j.celrep.2022.111206

Article  PubMed  PubMed Central  Google Scholar 

Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14(2):174–187. https://doi.org/10.1016/j.stem.2013.11.007

Article  CAS  PubMed  Google Scholar 

Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278(15):12601–12604. https://doi.org/10.1074/jbc.R200027200

Article  CAS  PubMed  Google Scholar 

Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206(3):451–456. https://doi.org/10.1002/jez.1402060314

Article  CAS 

Comments (0)

No login
gif