Bačević K, Lossaint G, Achour TN, Georget V, Fisher D, Dulić V (2017) Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep. https://doi.org/10.1038/s41598-017-12868-5
Article PubMed PubMed Central Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article CAS PubMed PubMed Central Google Scholar
Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, K-iT S, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A (2025) Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. Cell Genomics. https://doi.org/10.1016/j.xgen.2025.100761
Article PubMed PubMed Central Google Scholar
Cai H, Peng Z, Ren R, Wang H (2019) Efficient gene disruption via base editing induced stop in newt Pleurodeles waltl. Genes. https://doi.org/10.3390/genes10110837
Article PubMed PubMed Central Google Scholar
Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22(1):103–116. https://doi.org/10.1247/csf.22.103
Article CAS PubMed Google Scholar
Chiba C, Hoshino A, Nakamura K, Susaki K, Yamano Y, Kaneko Y, Kuwata O, Maruo F, Saito T (2006) Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt. J Comp Neurol 495(4):391–407. https://doi.org/10.1002/cne.20880
Article CAS PubMed Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635
Article CAS PubMed Google Scholar
Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millan JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384. https://doi.org/10.1038/ncomms1389
Article CAS PubMed Google Scholar
Ferretti P, Brockes JP (1988) Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool 247(1):77–91. https://doi.org/10.1002/jez.1402470111
Article CAS PubMed Google Scholar
Hasan MM, Sekiya R, Li TS (2023) Ex vivo expansion of primary cells from limb tissue of Pleurodeles waltl. Dev Growth Differ 65(5):255–265. https://doi.org/10.1111/dgd.12866
Article CAS PubMed Google Scholar
Ishii K, Suzuki N, Mabuchi Y, Sekiya I, Akazawa C (2017) Technical advantage of recombinant collagenase for isolation of muscle stem cells. Regen Ther 7:1–7. https://doi.org/10.1016/j.reth.2017.06.001
Article PubMed PubMed Central Google Scholar
Joven A, Elewa A, Simon A (2019) Model systems for regeneration: salamanders. Development. https://doi.org/10.1242/dev.167700
Article PubMed PubMed Central Google Scholar
Keefe JR (1973) An analysis of urodelian retinal regeneration. I. Studies of the cellular source of retinal regeneration in Notophthalmus viridescens utilizing 3H-thymidine and colchicine. J Exp Zool 184(2):185–206. https://doi.org/10.1002/jez.1401840206
Article CAS PubMed Google Scholar
Kim KH, Qiu J, Kuang S (2020) Isolation, culture, and differentiation of primary myoblasts derived from muscle satellite cells. Bio Protoc 10(14):e3686. https://doi.org/10.21769/BioProtoc.3686
Article CAS PubMed PubMed Central Google Scholar
Lau E, Zhu C, Abraham RT, Jiang W (2006) The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 7(4):425–430. https://doi.org/10.1038/sj.embor.7400624
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Peng Z, Fu S, Hua Y, Luo W, Liu R, Chen Y, Gu W, Zhao P, Zhao J, Wang Y, Wang H (2024) Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation. J Adv Res. https://doi.org/10.1016/j.jare.2024.12.046
Article PubMed PubMed Central Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Article CAS PubMed PubMed Central Google Scholar
Li BJ, Li PH, Huang RH, Sun WX, Wang H, Li QF, Chen J, Wu WJ, Liu HL (2015) Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci 28(8):1171–1177. https://doi.org/10.5713/ajas.14.0848
Article PubMed PubMed Central Google Scholar
Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29(1):1–19. https://doi.org/10.1002/cm.970290102
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8
Article CAS PubMed PubMed Central Google Scholar
Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H (2022) Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis. https://doi.org/10.1038/s41419-022-05284-9
Article PubMed PubMed Central Google Scholar
Ma T, Ren R, Lv J, Yang R, Zheng X, Hu Y, Zhu G, Wang H (2024) Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition. Elife. https://doi.org/10.7554/eLife.93220
Article PubMed PubMed Central Google Scholar
Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F (2022) Analysing high-throughput sequencing data in Python with HTSeq 20. Bioinformatics 38(10):2943–2945. https://doi.org/10.1093/bioinformatics/btac166
Article CAS PubMed PubMed Central Google Scholar
Ren R, Fan Y, Peng Z, Wang S, Jiang Y, Fu L, Cao J, Zhao S, Wang H (2022) Characterization and perturbation of CTCF-mediated chromatin interactions for enhancing myogenic transdifferentiation. Cell Rep. https://doi.org/10.1016/j.celrep.2022.111206
Article PubMed PubMed Central Google Scholar
Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14(2):174–187. https://doi.org/10.1016/j.stem.2013.11.007
Article CAS PubMed Google Scholar
Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278(15):12601–12604. https://doi.org/10.1074/jbc.R200027200
Article CAS PubMed Google Scholar
Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206(3):451–456. https://doi.org/10.1002/jez.1402060314
Comments (0)