Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration

Adam EN, Janes J, Lowney R, Lambert J, Thampi P, Stromberg A, MacLeod JN (2019) Chondrogenic differentiation potential of adult and fetal equine cell types. Vet Surg 48(3):375–387. https://doi.org/10.1111/vsu.13183

Article  PubMed  Google Scholar 

Aisenbrey EA, Bryant SJ (2019) The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 190:51–62. https://doi.org/10.1016/j.biomaterials.2018.10.028

Article  CAS  PubMed  Google Scholar 

Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, Kölby L (2017) Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE 12(12):e0189428. https://doi.org/10.1371/journal.pone.0189428

Article  CAS  PubMed  PubMed Central  Google Scholar 

Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W (2015) The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop 39(5):995–1003. https://doi.org/10.1007/s00264-014-2619-0

Article  PubMed  Google Scholar 

Bae HC, Park HJ, Wang SY, Yang HR, Lee MC, Han HS (2018) Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells. Biomater Res 22(1):1–8. https://doi.org/10.1186/s40824-018-0134-x

Article  CAS  Google Scholar 

Bai J, Zhang Y, Zheng X, Huang M, Cheng W, Shan H, Gao X, Zhang M, Sheng L, Dai J, Deng Y, Zhang H, Zhou X (2020) LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis 11(9):763. https://doi.org/10.1038/s41419-020-02945-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189–200. https://doi.org/10.1006/excr.2001.5278

Article  CAS  PubMed  Google Scholar 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

Article  CAS  PubMed  Google Scholar 

Barter MJ, Bui C, Cheung K, Falk J, Gómez R, Skelton AJ, Young DA (2020) DNA hypomethylation during MSC chondrogenesis occurs predominantly at enhancer regions. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-58093-5

Article  CAS  Google Scholar 

Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F (2012) Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS ONE 7(5):e36964. https://doi.org/10.1371/journal.pone.0036964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourdon B, Cassé F, Gruchy N, Cambier P, Leclercq S, Oddoux S, Galéra P (2021) Marine collagen hydrolysates promote collagen synthesis, viability and proliferation while downregulating the synthesis of pro-catabolic markers in human articular chondrocytes. Int J Mol Sci 22(7):3693. https://doi.org/10.3390/ijms22073693

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brehm W, Aklin B, Yamashita T, Rieser F, Trüb T, Jakob RP, Mainil-Varlet P (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage 14(12):1214–1226. https://doi.org/10.1016/j.joca.2006.05.002

Article  CAS  PubMed  Google Scholar 

Brunelle AR, Horner CB, Low K, Ico G, Nam J (2018) Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater 66:166–176. https://doi.org/10.1016/j.actbio.2017.11.020

Article  CAS  PubMed  Google Scholar 

Cai Y, Wu C, Ou Q, Zeng M, Xue S, Chen J, Lu Y, Ding C (2022) Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1. Bioac Mater 19:444–457. https://doi.org/10.1016/j.bioactmat.2022.04.021

Article  CAS  Google Scholar 

Campbell DD, Pei M (2012) Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 1(4):1107–1120. https://doi.org/10.3390/cells1041107

Article  PubMed  PubMed Central  Google Scholar 

Casanova MR, Osório H, Reis RL, Martins A, Neves NM (2021) Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate. NPJ Regen Med 6(1):1–12. https://doi.org/10.1038/s41536-021-00190-8

Article  CAS  Google Scholar 

Castro-Vinuelas R, Sanjurjo-Rodriguez C, Pineiro-Ramil M, Rodriguez-Fernandez S, Fuentes-Boquete I, Blanco-Garcia F, Prado SD (2020) Comparison of three different chondrogenic differentiation protocols to obtain chondrocyte-like cells from induced pluripotent stem cells. Osteoarthr Cartil 28:S34. https://doi.org/10.1016/j.joca.2020.02.056

Article  Google Scholar 

Chang YH, Wu KC, Ding DC (2022) Chondrogenic potential of human umbilical cord mesenchymal stem cells cultured with exosome-depleted fetal bovine serum in an osteoarthritis mouse model. Biomedicines 10(11):2773. https://doi.org/10.3390/biomedicines10112773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen MJ, Whiteley JP, Please CP, Schwab A, Ehlicke F, Waters SL, Byrne HM (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-β: a mathematical model. J Theor Biol 439:1–13. https://doi.org/10.1016/j.jtbi.2017.11.024

Article  CAS  PubMed  Google Scholar 

Chen S, Xu Z, Shao J, Fu P, Wu H (2019) MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 19(1):1–10. https://doi.org/10.1186/s12896-018-0496-0

Article  Google Scholar 

Chen J, Chen L, Hua J, Song W (2021) Long-term dynamic compression enhancement TGF-β3-induced chondrogenesis in bovine stem cells: a gene expression analysis. BMC Genomic Data 22(1):13. https://doi.org/10.1186/s12863-021-00967-2

Article  PubMed  PubMed Central  Google Scholar 

Chen T, Peng Y, Hu W, Shi H, Li P, Que Y, Qiu J, Qiu X, Gao B, Zhou H, Chen Y, Zhu Y, Li S, Liang A, Gao W, Huang D (2022) Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis. Stem Cell Res Ther 13(1):392. https://doi.org/10.1186/s13287-022-03092-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Huang X, Chen H, Bao D, Su X, Wei L, Hu N, Huang W, Xiang Z (2023) Hypoxia-mimicking scaffolds with controlled release of DMOG and PTHrP to promote cartilage regeneration via the HIF-1α/YAP signaling pathway. Int J Biol Macromol 226:716–729. https://doi.org/10.1016/j.ijbiomac.2022.12.094

Article  CAS  PubMed  Google Scholar 

Chen J, Ni X, Yang J, Yang H, Liu X, Chen M, Sun C, Wang Y (2024a) Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model. J Cell Mol Med 28(8):e18327. https://doi.org/10.1111/jcmm.18327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Tan Y, Chen Z, Yang H, Li X, Long X, Han Y, Yang J (2024b) Exosomes derived from primary cartilage stem/progenitor cells promote the repair of osteoarthritic chondrocytes by modulating immune responses. Int Immunopharmacol 143(Pt 2):113397. https://doi.org/10.1016/j.intimp.2024.113397

Article  CAS  PubMed  Google Scholar 

Cheng A, Cain SA, Tian P, Baldwin AK, Uppanan P, Kielty CM, Kimber SJ (2018) Recombinant extracellular matrix protein fragments support human embryonic stem cell chondrogenesis. Tissue Eng Part A 24(11–12):968–978. https://doi.org/10.1089/ten.TEA.2017.0285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho H, Lee A, Kim K (2018) The effect of serum types on chondrogenic differentiation of adipose-derived stem cells. Biomat Res 22(1):1–10. https://doi.org/10.1186/s40824-018-0116-z

Article  CAS  Google Scholar 

Comments (0)

No login
gif