Residual Movement Metrology Network and Transformer-Based Framework for Evaluating Movement Quality

Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702.

Article  Google Scholar 

Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Syst Rev. 2017;11(11):CD008349.

Google Scholar 

Nyman A, Zingmark M, Lilja M, Guidetti S. Information and communication technology in home-based rehabilitation—a discussion of possibilities and challenges. Scandinavian J Occup Ther. 2023;30(1):14–20.

Article  Google Scholar 

Gladman J, Forster A, Young J. Hospital- and home-based rehabilitation after discharge from hospital for stroke patients: analysis of two trials. Age Ageing. 1995;24(1):49–53.

Article  Google Scholar 

Gargot T, Archambault D, Chetouani M, et al. Automatic assessment of motor impairments in autism spectrum disorders: a systematic review. Cogn Comput. 2022;14:624–59.

Article  Google Scholar 

Rocha AP, Choupina H, et al. Kinect v2 based system for Parkinson’s disease assessment. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: Italy; 2015. p. 1279–82.

Chapter  Google Scholar 

Goldfarb N, Lewis A, Tacescu A, Fischer GS. Open source vicon toolkit for movement capture and gait analysis. Comput Methods Programs Biomed. 2021;212:106414.

Article  Google Scholar 

Liao Y, Vakanski A, Xian M. A deep learning framework for assessing physical rehabilitation exercises. IEEE Trans Neural Syst Rehabil Eng. 2020;28(2):468–77.

Article  Google Scholar 

Krishnan S, Samudravijaya K, Rao PVS. Feature selection for pattern classification with Gaussian mixture models: a new objective criterion. Pattern Recogn Lett. 1996;17(8):803–9.

Article  Google Scholar 

Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol Cybern. 1988;59(4):291–4.

Article  MathSciNet  Google Scholar 

Greff K, et al. LSTM: a search space odyssey. IEEE Trans Neural Netw Learn Syst. 2017;28(10):2222–32.

Article  MathSciNet  Google Scholar 

Kanade A, Sharma M, Muniyandi M. A robust and scalable attention guided deep learning framework for movement quality assessment. 2022. Preprint arXiv:2204.07840.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017. 6000 – 6010.

Vakanski A, Jun H-P, Paul DR, Baker RT. A data set of human body movements for physical rehabilitation exercises. Data (Basel). 2018;3(1):2.

Google Scholar 

Capecci M, Ceravolo MG, Ferracuti F, Iarlori S, Monteriu A, Romeo L, Verdini F. The KIMORE dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation. IEEE Trans Neural Syst Rehabil Eng. 2019;27(7):1436–48.

Article  Google Scholar 

Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. 2017. arXiv:1712.04621.

Usha Ruby DR. A. Binary cross entropy with deep learning technique for Image classification. Int J Adv Trends Comp. Sci Eng. 2020;9(4):5393-5397

Djork-Arné C, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs). In: International Conference on Learning Representations. 2016.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: transformers for image recognition at scale. In 9th International Conference on Learning Representations, ICLR1, Virtual Event, Austria. 2021.

Li B, Wang Z, Liu H, Du Q, Xiao T, Zhang C, Zhu J. Learning light-weight translation models from deep transformer. Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35(15):13217–25.

Article  Google Scholar 

Hendrycks D, Gimpel K. Gaussian error linear units (GELUs). arXiv: Learning. 2016.

Kingma DP, Ba J. Adam: a method for stochastic optimization. In International Conference on Learning Representations, May 7–9, 2015, San Diego. 2015.

Sakaridis C, Dai D, Van Gool L. Semantic foggy scene understanding with synthetic data. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand. 2019;2019:3675–81.

Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 2016. 770–778.

Comments (0)

No login
gif