Biswas SS. Potential use of Chat GPT in global warming. Ann Biomed Eng. 2023;51:1126–7.
Mcgee RW. Annie chan: Three short stories written with Chat GPT. 2023. https://doi.org/10.13140/RG.2.2.21169.66401.
McGee RW. Is Chat Gpt biased against conservatives? An empirical study. SSRN Electron J. 2023.
Mathew A. Is artificial intelligence a world changer? A case study of OpenAI’s Chat GPT. Recent Progress in Science and Technology Vol 5. B P International (a part of SCIENCEDOMAIN International); 2023. p. 35–42.
Rudolph J, Tan S, Tan S. ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? J Appl Learn Teach. 2023;6:342–63.
Naumova EN. Intellectual humility in public health training, research, and practice. J Public Health Policy. 2023;44:1–5.
King MR. A Conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cell Mol Bioeng. 2023;16:1–2.
Liebrenz M, Schleifer R, Buadze A, Bhugra D, Smith A. Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health. 2023;5:e105–6.
Wu C, Yin S, Qi W, Wang X, Tang Z, Duan N. Visual ChatGPT: talking, drawing and editing with visual foundation models. 2023.
van Dis EAM, Bollen J, Zuidema W, van Rooij R, Bockting CL. ChatGPT: five priorities for research. Nature. 2023;614:224–6.
Shen Y, Heacock L, Elias J, Hentel KD, Reig B, Shih G, et al. ChatGPT and other large language models are double-edged swords. Radiology. 2023;307. https://doi.org/10.1148/radiol.230163.
Wang F-Y, Miao Q, Li X, Wang X, Lin Y. What does ChatGPT say: the DAO from algorithmic intelligence to linguistic intelligence. IEEE/CAA J Autom Sin. 2023;10:575–9.
Taecharungroj V. “What can ChatGPT do?” Analyzing early reactions to the innovative AI chatbot on Twitter. Big Data Cogn Comput. 2023;7:35.
Alberts IL, Mercolli L, Pyka T, Prenosil G, Shi K, Rominger A, et al. Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be? Eur J Nucl Med Mol Imaging. 2023;50:1549–52.
Haleem A, Javaid M, Singh RP. An era of ChatGPT as a significant futuristic support tool: a study on features, abilities, and challenges. Bench Counc Trans Benchmarks, Stand Evaluations. 2022;2:100089.
Michail A, Konstantinou S, Clematide S. UZH_CLyp at SemEval-2023 task 9: head-first fine-tuning and ChatGPT data generation for cross-lingual learning in tweet intimacy prediction. Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023). Stroudsburg, PA, USA: Association for Computational Linguistics; 2023. p. 1021–9.
Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Med Educ. 2023;9:e46885.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017.
Liu Y, Han T, Ma S, Zhang J, Yang Y, Tian J, et al. Summary of ChatGPT-Related research and perspective towards the future of large language models. Meta-Radiology. 2023;1:100017.
Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language understanding by generative pre-training. Computer Science, Linguistics. 2018. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf?trk=article-ssrfrontend-pulse_little-text-block.
Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805 [Internet]. 2018; Available from: http://arxiv.org/abs/1810.04805.
Yang Z, Sun P-L, Lin T-H. Deep convolution neural networks for painting-like 3D rendering. Proceedings of the International Display Workshops. 2019;32. https://doi.org/10.36463/IDW.2019.AIS2-3.
Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. Computer Science > Machine Learning, [Submitted on 23 Oct 2019 (v1), last revised 19 Sep 2023 (version, v4)]. 2019. https://arxiv.org/abs/1910.10683.
Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoBERTa: a robustly optimized BERT Pretraining Approach. 2019.
Kasneci E, Sessler K, Küchemann S, Bannert M, Dementieva D, Fischer F, et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn Individ Differ. 2023;103:102274.
Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, et al. A survey on evaluation of large language models. arXiv preprint arXiv:230703109. 2023.
Ibrahim HA, Qahtan S, Zaidan AA, Deveci M, Hajiaghaei-Keshteli M, Mohammed RT, et al. Sustainability in mobility for autonomous vehicles over smart city evaluation; using interval-valued fermatean fuzzy rough set-based decision-making model. Eng Appl Artif Intell. 2024;129:107609.
Mohammed MT, Shubber MS, Jalood NS, Jasim AN, Shareef AH, Garfan S. Intelligent approach for school teacher recruitment: distributing IT subjects based on multiple attributes. Appl Model Simul. 2023;7:100–10. Available from: http://arqiipubl.com/ams.
Qahtan S, Yatim K, Osman MH, Zulzalil H, Luqman M, Zakaria M. A decision cloud ranking approach based on privacy and security in blockchain e-health industry 4.0 Systems. J Tech. 2023;5:1–15. https://doi.org/10.51173/jt.v5i4.1464.
Yue W, Hou L, Wan X, Chen X, Gui W. Superheat degree recognition of aluminum electrolysis cell using unbalance double hierarchy hesitant linguistic Petri nets. IEEE Trans Instrum Meas. 2023;72:1–15.
Yue W, Chai J, Wan X, Xie Y, Chen X, Gui W. Root cause analysis for process industry using causal knowledge map under large group environment. Adv Eng Inform. 2023;57:102057.
Yue W, Wan X, Li S, Ren H, He H. Simplified neutrosophic petri nets used for identification of superheat degree. Int J Fuzzy Syst. 2022;24:3431–55.
Biswas S, Biswas B, Mitra K. A novel group decision making model to compare online shopping platforms. Spectr Decis Mak Appl. 2024;2(1):1–27.
Mehdiabadi A, Sadeghi A, Karbassi Yazdi A, Tan Y. Sustainability service chain capabilities in the oil and gas industry: a fuzzy hybrid approach SWARA-MABAC. Spectr Oper Res. 2024;2(1):92–112.
Hajiakhondi A, Sadeghi A, Karbassi Yazdi A. Evaluation and analysis of factors affecting delays in large-scale complex projects: case study of oil well drilling. Spectr Eng Manag Sci. 2024;3(1):1–17.
Naveed H, Ali S. Addressing decision-making challenges: similarity measures for interval-valued intuitionistic fuzzy hypersoft sets. Decis Mak Adv. 2024;3(1):175–84.
Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–53.
Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20:87–96.
Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010;25:529–39.
Pawlak Z. Rough sets. International Journal of Computer & Information Sciences [Internet]. 1982 [cited 2022 May 22];11:341–56. https://doi.org/10.1007/BF01001956.
Alsattar HA, Mourad N, Zaidan AA, Deveci M, Qahtan S, Jayaraman V, et al. Developing IoT sustainable real-time monitoring devices for food supply chain systems based on climate change using circular intuitionistic fuzzy set. IEEE Internet Things J. 2023;11(16):26680–9.
Singh AK, Kumar VRP, Dehdasht G, Mohandes SR, Manu P, Pour RF. Investigating barriers to blockchain adoption in construction supply chain management: a fuzzy-based MCDM approach. Technol Forecast Soc Change. 2023;196:122849.
Zaidan AA, Alsattar HA, Qahtan S, Deveci M, Pamucar D, Gupta BB. Secure decision approach for Internet of Healthcare Things smart systems-based blockchain. IEEE Internet Things J. 2023;10:1–1.
Krishankumar R, Dhruva S, Ravichandran KS, Kar S. Selection of a viable blockchain service provider for data management within the internet of medical things: an MCDM approach to Indian healthcare. Inf Sci (N Y). 2024;657:119890.
Baqer MJ, AlSattar HA, Qahtan S, Zaidan AA, Izhar MAM, Abbas IT. A decision modeling approach for data acquisition systems of the vehicle industry based on interval-valued linear diophantine fuzzy set. Int J Inf Technol Decis Mak [Internet]. 2023 [cited 2023 May 14];Online Ready:1–80. https://doi.org/10.1142/S0219622023500487
Yang Y, Wang H, Zhao Y, Zhang L, Li Y. Three-way decision approach for water ecological security evaluation and regulation coupled with VIKOR: a case study in Beijing-Tianjin-Hebei region. J Clean Prod [Internet]. 2022 [cited 2023 May 20];379. Available from: https://www.sciencedirect.com/science/article/pii/S095965262204238X
Song J, He Z, Jiang L, Liu Z, Leng X. Research on hybrid multi-attribute three-way group decision making based on improved VIKOR model. Mathematics [Internet]. 2022 [cited 2023 May 20];10:10. Available from: https://www.mdpi.com/1762970
Gao Y, Li D sheng, Zhong H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment. Eng Appl Artif Intell [Internet]. 2020 [cited 2023 May 20];87. Available from: https://www.sciencedirect.com/science/article/pii/S0952197619302416
Yao Y, Deng X. Sequential three-way decisions with probabilistic rough sets. IEEE 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI-CC’11) [Internet]. 2011 [cited 2023 May 20];180:120–5. Available from: https://www.sciencedirect.com/science/article/pii/S0020025509004253
Alsattar HA, Qahtan S, Mourad N, Zaidan AA, Deveci M, Jana C, et al. Three-way decision-based conditional probabilities by opinion scores and Bayesian rules in circular-pythagorean fuzzy sets for sustainable smart living framework. Inf Sci (N Y). 2023;649:119681.
Mourad N, Alsattar HA, Qahtan S, Zaidan AA, Deveci M, Sangaiah AK, et al. Decisioning-based approach for optimising control engineering tools using digital twin capabilities and other cyber-physical metaverse manufacturing system components. IEEE Trans Consum Electron. 2023;70:3212–3221.
Alsattar HA, Qahtan S, Zaidan AA, Deveci M, Martinez L, Pamucar D, et al. Developing deep transfer and machine learning models of chest X-ray for diagnosing COVID-19 cases using probabilistic single-valued neutrosophic hesitant fuzzy. Expert Syst Appl. 2024;236:121300.
Ghailani H, Zaidan AA, Qahtan S, Alsattar HA, Al-Emran M, Deveci M, et al. Developing sustainable management strategies in construction and demolition wastes using a q-rung orthopair probabilistic hesitant fuzzy set-based decision modelling approach. Appl Soft Comput. 2023;145:110606.
Hussein ali khudhyer alhadad, Abdelkarim E, Hassan AA, Sarah Q, Nahia M, Aws AZ. Intelligent approach for developing a blood product supply chain to mitigate shortages and preclude wastage. Eng Appl Artif Intell. 2024.
Yager RR. Pythagorean fuzzy subsets. Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013. 2013;57–61.
Yager RR. Generalized Orthopair Fuzzy Sets. IEEE Trans Fuzzy Syst. 2017;25:1222–30.
Senapati T, Yager RR. Fermatean fuzzy sets. J Ambient Intell Humaniz Comput. 2020;11:663–74.
Arora HD, Naithani A. A new definition for quartic fuzzy sets with hesitation grade applied to multi-criteria decision-making problems under uncertainty. Decis Analytics J. 2023;7:100239.
Atanassov KT. Circular intuitionistic fuzzy sets. J Intell Fuzzy Syst [Internet]. 2020 [cited 2023 May 20];39:5981–6. Available from: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs189072.
Bozyiğit MC, Olgun M, Ünver M. Circular Pythagorean fuzzy sets and applications to multi-criteria decision making. arXiv e-prints. 2022.
Yusoff B, Kilicman A, Pratama D, Hasni R. Circular q-rung orthopair fuzzy set and its algebraic properties. Malays J Math Sci. 2023;17:363–78.
Comments (0)