Rain Streak Removal Using Improved Generative Adversarial Network with Loss Function Optimization

Wang D, Wang Z. Research and implementation of image rain removal based on deep learning. International Journal of Advanced Network, Monitoring and Controls. 2022;7(3):25–32.

Article  Google Scholar 

Cheng L, Liu N, Guo X, Shen Y, Meng Z, Huang K, Zhang X. A novel rain removal approach for outdoor dynamic vision sensor event videos. Front Neurorobot. 2022;16: 928707.

Article  Google Scholar 

Liang X, Zhao F. Single-image rain removal network based on an attention mechanism and a residual structure. IEEE Access. 2022;10:52472–80.

Article  Google Scholar 

Vu, D. T., Gonzalez, J. L., & Kim, M. (2021). Exploiting global and local attentions for heavy rain removal on single images. arXiv preprint arXiv:2104.08126.

Huang S, Xu Y, Ren M, Yang Y, Wan W. Rain removal of single image based on directional gradient priors. Appl Sci. 2022;12(22):11628.

Article  Google Scholar 

He X, Feng Y, Xie Q, Wang J. Low-rank appearance-preserving rain streak removal from single images. Commun Inf Syst. 2022;22(1):79–102.

Article  Google Scholar 

Jayaraman, T., &Chinnusamy, S. (2022). Performance analysis of a dual stage deep rain streak removal convolution neural network module with a modified deep residual dense network. International Journal of Applied Mathematics and Computer Science, 32(1).

Jiang N, Chen W, Lin L, Zhao T. Single image rain removal via multi-module deep grid network. Comput Vis Image Underst. 2021;202: 103106.

Article  Google Scholar 

Wang H, Wu Y, Li M, Zhao Q, Meng D. Survey on rain removal from videos or a single image. SCIENCE CHINA Inf Sci. 2022;65(1): 111101.

Article  MathSciNet  Google Scholar 

Swaminathan, R., &Korupolu, P. (2023). MobileDeRainGAN: an efficient semi-supervised approach to single image rain removal for task-driven applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 192–201).

Hettiarachchi P, Nawaratne R, Alahakoon D, De Silva D, Chilamkurti N. Rain streak removal for single images using conditional generative adversarial networks. Appl Sci. 2021;11(5):2214.

Article  Google Scholar 

Fu, X., Qi, Q., Zha, Z. J., Zhu, Y., & Ding, X. (2021, May). Rain streak removal via dual graph convolutional network.In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 2, pp. 1352–1360).

Fan W, Wu Y, Wang C. Single image rain streak removal via layer similarity prior. Appl Intell. 2021;51:5822–35.

Article  Google Scholar 

Su Z, Zhang Y, Zhang XP, Qi F. Non-local channel aggregation network for single image rain removal. Neurocomputing. 2022;469:261–72.

Article  Google Scholar 

Daneshfar F, Bartani A, Lotfi P. Image captioning by diffusion models: a survey. Eng Appl Artif Intell. 2024;138: 109288.

Article  Google Scholar 

He Y, Zeng T, Xiong Y, Li J, Wei H. Deep leaning based frequency-aware single image deraining by extracting knowledge from rain and background. Machine Learning and Knowledge Extraction. 2022;4(3):738–52.

Article  Google Scholar 

Li M, Cao X, Zhao Q, Zhang L, Meng D. Online rain/snow removal from surveillance videos. IEEE Trans Image Process. 2021;30:2029–44.

Article  Google Scholar 

Shen, Y., Wang, Y., Wei, M., Chen, H., Xie, H., Cheng, G., & Wang, F. L. (2022, October). Semi‐MoreGAN: semi‐supervised generative adversarial network for mixture of rain removal. In Computer Graphics Forum (Vol. 41, No. 7, pp. 443–454).

Mi Y, Yuan S, Li X, Zhou J. Dense residual generative adversarial network for rapid rain removal. IEEE Access. 2021;9:24848–58.

Article  Google Scholar 

Pan, X., Yang, Y., Yang, C., Wang, C., & Tan, A. (2021, September). Two-stage fusion model for heavy rain removal on single image. In Journal of Physics: Conference Series (Vol. 2035, No. 1, p. 012041). IOP Publishing.

Yang Y, Xu M, Chen C, Xue F. Removing rain streaks from visual image using a combination of bilateral filter and generative adversarial network. Appl Sci. 2023;13(11):6387.

Article  Google Scholar 

Arora, S., Bindra, S., Ahmad, M., & Ahmad, T. (2022, June). Decomposition makes better rain removal: an enhanced attention-guided image de-raining using deconvolutions network. In Proceedings of Second International Conference in Mechanical and Energy Technology: ICMET 2021, India (pp. 323–331). Singapore: Springer Nature Singapore.

Sivaanpu, A., &Thanikasalam, K. (2022, December). A dual CNN architecture for single image raindrop and rain streak removal.In 2022 7th International Conference on Information Technology Research (ICITR) (pp. 1–6).IEEE.

Frants, V., Agaian, S., & Panetta, K. (2023). QSAM-Net: rain streak removal by quaternion neural network with self-attention module. IEEE Transactions on Multimedia.

Yan, T., Li, M., Li, B., Yang, Y., & Lau, R. W. (2022). Rain removal from light field images with 4D convolution and multi-scale Gaussian process. arXiv preprint arXiv:2208.07735.

Zhou M, Zhao X, Luo F, Luo J, Pu H, Xiang T. Robust Rgb-T tracking via adaptive modality weight correlation filters and cross-modality learning. ACM Trans Multimed Comput Commun Appl. 2023;20(4):1–20.

Google Scholar 

Zhou M, Lan X, Wei X, Liao X, Mao Q, Li Y, Wu C, Xiang T, Fang B. An end-to-end blind image quality assessment method using a recurrent network and self-attention. IEEE Trans Broadcast. 2022;69(2):369–77.

Article  Google Scholar 

Zhou M, Chen L, Wei X, Liao X, Mao Q, Wang H, Pu H, Luo J, Xiang T, Fang B. Perception-oriented U-shaped transformer network for 360-degree no-reference image quality assessment. IEEE Trans Broadcast. 2023;69(2):396–405.

Article  Google Scholar 

https://github.com/jinnovation/rainy-image-dataset

Comments (0)

No login
gif