Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimed Tools Appl. 2023;82(17):26731–69. https://doi.org/10.1007/s11042-022-14305-w.
Tsuneki M. Deep learning models in medical image analysis. J Oral Biosci. 2022;64(3):312–20. https://doi.org/10.1016/j.job.2022.03.003.
Jasti VDP, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, Raghuvanshi A, Kaliyaperumal K. Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Secur Commun Netw. 2022;2022(1): 1918379. https://doi.org/10.1155/2022/1918379.
Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. Transfer learning for medical image classification: a literature review. BMC Med Imaging. 2022;22(1):69. https://doi.org/10.1186/s12880-022-00793-7.
Gaur L, Bhatia U, Jhanjhi NZ, Muhammad G, Masud M. Medical image-based detection of COVID-19 using deep convolution neural networks. Multimed Syst. 2023;29(3):1729–38. https://doi.org/10.1007/s00530-021-00794-6.
Hebbale S, Marndi A, Manjunatha Kumar BH, Mohan BR, Achyutha PN, Pareek PK. A survey on automated medical image classification using deep learning. Int J Health Sci. 2022;6(S1):7850–65. https://doi.org/10.53730/ijhs.v6nS1.6791.
Suganyadevi S, Seethalakshmi V, Balasamy K. A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval. 2022;11(1):19–38. https://doi.org/10.1007/s13735-021-00218-1.
Chen X, Wang X, Zhang K, Fung KM, Thai TC, Moore K, Mannel RS, Liu H, Zheng B, Qiu Y. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal. 2022;79: 102444. https://doi.org/10.1016/j.media.2022.102444.
Jiang H, Diao Z, Shi T, Zhou Y, Wang F, Hu W, Zhu X, Luo S, Tong G, Yao YD. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med. 2023;157: 106726.
Priyadharshini N, Selvanathan N, Hemalatha B, Sureshkumar C. A novel hybrid extreme learning machine and teaching–learning-based optimization algorithm for skin cancer detection. Healthcare Analytics. 2023;3: 100161. https://doi.org/10.1016/j.health.2023.100161.
Siddiqui EA, Chaurasia V, Shandilya M. Detection and classification of lung cancer computed tomography images using a novel improved deep belief network with Gabor filters. Chemom Intell Lab Syst. 2023;235: 104763. https://doi.org/10.1016/j.chemolab.2023.104763.
Avcı H, Karakaya J. A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning. Diagn. 2023;13(3):348. https://doi.org/10.3390/diagnostics13030348.
Kanya Kumari L, Naga JB. An adaptive teaching learning based optimization technique for feature selection to classify mammogram medical images in breast cancer detection. International Journal of System Assurance Engineering and Management. 2024;15(1):35–48. https://doi.org/10.1007/s13198-021-01598-7.
Khan SUR, Zhao M, Asif S, Chen X. Hybrid-NET: a fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. Int J Imaging Syst Technol. 2024;34(1): e22975. https://doi.org/10.1002/ima.22975.
Xu Q, Ma Z, Na HE, Duan W. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med. 2023;154: 106626. https://doi.org/10.1016/j.compbiomed.2023.106626.
Mansour RF, Alfar NM, Abdel-Khalek S, Abdelhaq M, Saeed RA, Alsaqour R. Optimal deep learning based fusion model for biomedical image classification. Expert Syst. 2022;39(3): e12764. https://doi.org/10.1111/exsy.12764.
Kumar KA, Prasad AY, Metan J. A hybrid deep CNN-Cov-19-Res-Net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing. Biomed Signal Process Control. 2022;76: 103631. https://doi.org/10.1016/j.bspc.2022.103631.
Aytaç UC, Güneş A, Ajlouni N. A novel adaptive momentum method for medical image classification using convolutional neural network. BMC Med Imaging. 2022;22(1):34. https://doi.org/10.1186/s12880-022-00755-z.
Rammurthy D, Mahesh PK. Whale Harris hawks optimization based deep learning classifier for brain tumor detection using MRI images. Journal of King Saud University-Computer and Information Sciences. 2022;34(6):3259–72. https://doi.org/10.1016/j.jksuci.2020.08.006.
Houssein EH, Emam MM, Ali AA. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput Appl. 2022;34(20):18015–33. https://doi.org/10.1007/s00521-022-07445-5.
ZainEldin H, Gamel SA, El-Kenawy ESM, Alharbi AH, Khafaga DS, Ibrahim A, Talaat FM. Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering. 2022;10(1): 18. https://doi.org/10.3390/bioengineering10010018.
Ganesh N, Jayalakshmi S, Narayanan RC, Mahdal M, Zawbaa HM, Mohamed AW. Gated deep reinforcement learning with red deer optimization for medical image classification. IEEE Access. 2023;11:58982–93. https://doi.org/10.1109/ACCESS.2023.3281546.
Aljohani M, Bahgat WM, Balaha HM, AbdulAzeem Y, El-Abd M, Badawy M, Elhosseini MA. An automated metaheuristic-optimized approach for diagnosing and classifying brain tumors based on a convolutional neural network. Results in Engineering. 2024;23: 102459. https://doi.org/10.1016/j.rineng.2024.102459.
Ragab M, Kateb F, El-Sawy EK, Binyamin SS, Al-Rabia MW, Mansouri RA. Archimedes optimization algorithm with deep learning-based prostate cancer classification on magnetic resonance imaging. Healthcare. 2023;11(4):590.
Ahammed M, Al Mamun M, Uddin MS. A machine learning approach for skin disease detection and classification using image segmentation. Healthc Analytics. 2022;2:100122. https://doi.org/10.1016/j.health.2022.100122.
Kollem S, Reddy KR, Prasad CR, Chakraborty A, Ajayan J, Sreejith S, Bhattacharya S, Joseph LL, Janapati R. AlexNet-NDTL: classification of MRI brain tumor images using modified AlexNet with deep transfer learning and Lipschitz-based data augmentation. Int J Imaging Syst Technol. 2023;33(4):1306–22. https://doi.org/10.1002/ima.22870.
Ali R, Hardie RC, Narayanan BN, Kebede TM. IMNets: deep learning using an incremental modular network synthesis approach for medical imaging applications. Appl Sci. 2022;12(11): 5500. https://doi.org/10.3390/app12115500.
Li X, Li M, Yan P, Li G, Jiang Y, Luo H, Yin S. Deep learning attention mechanism in medical image analysis: basics and beyonds. Int J Netw Dynamics Intell. 2023;93–116. https://doi.org/10.53941/ijndi0201006.
Li X, Lv S, Li M, Zhang J, Jiang Y, Qin Y, Luo H, Yin S. SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization. IEEE Trans Med Imaging. 2023;42(8):2274–85. https://doi.org/10.1109/TMI.2023.3247543.
Mahmood T, Saba T, Rehman A, Alamri FS. Harnessing the power of radiomics and deep learning for improved breast cancer diagnosis with multiparametric breast mammography. Expert Syst Appl. 2024;249: 123747. https://doi.org/10.1016/j.eswa.2024.123747.
Mahmood T, Rehman A, Saba T, Nadeem L, Bahaj SAO. Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access. 2023. https://doi.org/10.1109/ACCESS.2023.3313977.
Iqbal S, Qureshi AN, Li J, Mahmood T. On the analyses of medical images using traditional machine learning techniques and convolutional neural networks. Archives of Computational Methods in Engineering. 2023;30(5):3173–233. https://doi.org/10.1007/s11831-023-09899-9.
Iqbal S, Qureshi AN, Ullah A, Li J, Mahmood T. Improving the robustness and quality of biomedical cnn models through adaptive hyperparameter tuning. Appl Sci. 2022;12(22): 11870. https://doi.org/10.3390/app122211870.
Comments (0)