EPDTNet + -EM: Advanced Transfer Learning and SubNet Architecture for Medical Image Diagnosis

Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimed Tools Appl. 2023;82(17):26731–69. https://doi.org/10.1007/s11042-022-14305-w.

Article  Google Scholar 

Tsuneki M. Deep learning models in medical image analysis. J Oral Biosci. 2022;64(3):312–20. https://doi.org/10.1016/j.job.2022.03.003.

Article  Google Scholar 

Jasti VDP, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, Raghuvanshi A, Kaliyaperumal K. Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Secur Commun Netw. 2022;2022(1): 1918379. https://doi.org/10.1155/2022/1918379.

Article  Google Scholar 

Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. Transfer learning for medical image classification: a literature review. BMC Med Imaging. 2022;22(1):69. https://doi.org/10.1186/s12880-022-00793-7.

Article  Google Scholar 

Gaur L, Bhatia U, Jhanjhi NZ, Muhammad G, Masud M. Medical image-based detection of COVID-19 using deep convolution neural networks. Multimed Syst. 2023;29(3):1729–38. https://doi.org/10.1007/s00530-021-00794-6.

Article  Google Scholar 

Hebbale S, Marndi A, Manjunatha Kumar BH, Mohan BR, Achyutha PN, Pareek PK. A survey on automated medical image classification using deep learning. Int J Health Sci. 2022;6(S1):7850–65. https://doi.org/10.53730/ijhs.v6nS1.6791.

Article  Google Scholar 

Suganyadevi S, Seethalakshmi V, Balasamy K. A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval. 2022;11(1):19–38. https://doi.org/10.1007/s13735-021-00218-1.

Article  Google Scholar 

Chen X, Wang X, Zhang K, Fung KM, Thai TC, Moore K, Mannel RS, Liu H, Zheng B, Qiu Y. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal. 2022;79: 102444. https://doi.org/10.1016/j.media.2022.102444.

Article  Google Scholar 

Jiang H, Diao Z, Shi T, Zhou Y, Wang F, Hu W, Zhu X, Luo S, Tong G, Yao YD. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med. 2023;157: 106726.

Article  Google Scholar 

Priyadharshini N, Selvanathan N, Hemalatha B, Sureshkumar C. A novel hybrid extreme learning machine and teaching–learning-based​ optimization algorithm for skin cancer detection. Healthcare Analytics. 2023;3: 100161. https://doi.org/10.1016/j.health.2023.100161.

Article  Google Scholar 

Siddiqui EA, Chaurasia V, Shandilya M. Detection and classification of lung cancer computed tomography images using a novel improved deep belief network with Gabor filters. Chemom Intell Lab Syst. 2023;235: 104763. https://doi.org/10.1016/j.chemolab.2023.104763.

Article  Google Scholar 

Avcı H, Karakaya J. A novel medical image enhancement algorithm for breast cancer detection on mammography images using machine learning. Diagn. 2023;13(3):348. https://doi.org/10.3390/diagnostics13030348.

Article  Google Scholar 

Kanya Kumari L, Naga JB. An adaptive teaching learning based optimization technique for feature selection to classify mammogram medical images in breast cancer detection. International Journal of System Assurance Engineering and Management. 2024;15(1):35–48. https://doi.org/10.1007/s13198-021-01598-7.

Article  Google Scholar 

Khan SUR, Zhao M, Asif S, Chen X. Hybrid-NET: a fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. Int J Imaging Syst Technol. 2024;34(1): e22975. https://doi.org/10.1002/ima.22975.

Article  Google Scholar 

Xu Q, Ma Z, Na HE, Duan W. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med. 2023;154: 106626. https://doi.org/10.1016/j.compbiomed.2023.106626.

Article  Google Scholar 

Mansour RF, Alfar NM, Abdel-Khalek S, Abdelhaq M, Saeed RA, Alsaqour R. Optimal deep learning based fusion model for biomedical image classification. Expert Syst. 2022;39(3): e12764. https://doi.org/10.1111/exsy.12764.

Article  Google Scholar 

Kumar KA, Prasad AY, Metan J. A hybrid deep CNN-Cov-19-Res-Net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing. Biomed Signal Process Control. 2022;76: 103631. https://doi.org/10.1016/j.bspc.2022.103631.

Article  Google Scholar 

Aytaç UC, Güneş A, Ajlouni N. A novel adaptive momentum method for medical image classification using convolutional neural network. BMC Med Imaging. 2022;22(1):34. https://doi.org/10.1186/s12880-022-00755-z.

Article  Google Scholar 

Rammurthy D, Mahesh PK. Whale Harris hawks optimization based deep learning classifier for brain tumor detection using MRI images. Journal of King Saud University-Computer and Information Sciences. 2022;34(6):3259–72. https://doi.org/10.1016/j.jksuci.2020.08.006.

Article  Google Scholar 

Houssein EH, Emam MM, Ali AA. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput Appl. 2022;34(20):18015–33. https://doi.org/10.1007/s00521-022-07445-5.

Article  Google Scholar 

ZainEldin H, Gamel SA, El-Kenawy ESM, Alharbi AH, Khafaga DS, Ibrahim A, Talaat FM. Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering. 2022;10(1): 18. https://doi.org/10.3390/bioengineering10010018.

Article  Google Scholar 

Ganesh N, Jayalakshmi S, Narayanan RC, Mahdal M, Zawbaa HM, Mohamed AW. Gated deep reinforcement learning with red deer optimization for medical image classification. IEEE Access. 2023;11:58982–93. https://doi.org/10.1109/ACCESS.2023.3281546.

Article  Google Scholar 

Aljohani M, Bahgat WM, Balaha HM, AbdulAzeem Y, El-Abd M, Badawy M, Elhosseini MA. An automated metaheuristic-optimized approach for diagnosing and classifying brain tumors based on a convolutional neural network. Results in Engineering. 2024;23: 102459. https://doi.org/10.1016/j.rineng.2024.102459.

Article  Google Scholar 

Ragab M, Kateb F, El-Sawy EK, Binyamin SS, Al-Rabia MW, Mansouri RA. Archimedes optimization algorithm with deep learning-based prostate cancer classification on magnetic resonance imaging. Healthcare. 2023;11(4):590.

Article  Google Scholar 

Ahammed M, Al Mamun M, Uddin MS. A machine learning approach for skin disease detection and classification using image segmentation. Healthc Analytics. 2022;2:100122. https://doi.org/10.1016/j.health.2022.100122.

Kollem S, Reddy KR, Prasad CR, Chakraborty A, Ajayan J, Sreejith S, Bhattacharya S, Joseph LL, Janapati R. AlexNet-NDTL: classification of MRI brain tumor images using modified AlexNet with deep transfer learning and Lipschitz-based data augmentation. Int J Imaging Syst Technol. 2023;33(4):1306–22. https://doi.org/10.1002/ima.22870.

Article  Google Scholar 

Ali R, Hardie RC, Narayanan BN, Kebede TM. IMNets: deep learning using an incremental modular network synthesis approach for medical imaging applications. Appl Sci. 2022;12(11): 5500. https://doi.org/10.3390/app12115500.

Article  Google Scholar 

Li X, Li M, Yan P, Li G, Jiang Y, Luo H, Yin S. Deep learning attention mechanism in medical image analysis: basics and beyonds. Int J Netw Dynamics Intell. 2023;93–116. https://doi.org/10.53941/ijndi0201006.

Li X, Lv S, Li M, Zhang J, Jiang Y, Qin Y, Luo H, Yin S. SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization. IEEE Trans Med Imaging. 2023;42(8):2274–85. https://doi.org/10.1109/TMI.2023.3247543.

Article  Google Scholar 

Mahmood T, Saba T, Rehman A, Alamri FS. Harnessing the power of radiomics and deep learning for improved breast cancer diagnosis with multiparametric breast mammography. Expert Syst Appl. 2024;249: 123747. https://doi.org/10.1016/j.eswa.2024.123747.

Article  Google Scholar 

Mahmood T, Rehman A, Saba T, Nadeem L, Bahaj SAO. Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access. 2023. https://doi.org/10.1109/ACCESS.2023.3313977.

Article  Google Scholar 

Iqbal S, Qureshi AN, Li J, Mahmood T. On the analyses of medical images using traditional machine learning techniques and convolutional neural networks. Archives of Computational Methods in Engineering. 2023;30(5):3173–233. https://doi.org/10.1007/s11831-023-09899-9.

Article  Google Scholar 

Iqbal S, Qureshi AN, Ullah A, Li J, Mahmood T. Improving the robustness and quality of biomedical cnn models through adaptive hyperparameter tuning. Appl Sci. 2022;12(22): 11870. https://doi.org/10.3390/app122211870.

Article  Google Scholar 

Comments (0)

No login
gif