Comparative Analysis of Hybrid and Ensemble Machine Learning Approaches in Predicting Football Player Transfer Values

Tamir I, Hilik Limor Y, Galily Y. Sports: faster, higher, stronger, and public relations. Hum Aff. 2015;25(1):93–109. https://doi.org/10.1515/humaff-2015-0008.

Article  Google Scholar 

Seippel Ø, Dalen HB, Sandvik MR, Solstad GM. From political sports to sports politics: on political mobilization of sports issues. Int J Sport policy Polit. 2018;10(4):669–86. https://doi.org/10.1080/19406940.2018.1501404.

Article  Google Scholar 

UEFA. 2021b. [Online]. Available: https://www.uefa.com/uefachampionsleague/history/seasons/2021/. Accessed 20 Oct 2024

Bridge T, Hammond T, Tantam L. Deloitte Football Money League 2023: get up, stand up. Deloitte. 2023 Jun [cited 2023 June 21].” [Online]. Available: https://www2.deloitte.com/uk/en/pages/sportsbusiness-group/articles/deloitte-football-money-league.html. Accessed 20 Oct 2024

Malagón-Selma P, Debón A, Domenech J. Measuring the popularity of football players with Google Trends. PLoS ONE. 2023;18(8):e0289213. https://doi.org/10.1371/journal.pone.0289213.

Article  Google Scholar 

BBC. 2017b. [Online]. Available: https://www.bbc.com/worklife/article/20170829-how-does-a-football-transfer-work. Accessed 20 Oct 2024

BBC. [Online]. Available: neymar: Paris St-Germain sign Barcelona forward for world record%0D222m euros. BBC. 2017a.

Walker C. [Online]. Available: Manchester United will recover the costs of the sensational%0Dsigning of Cristiano Ronaldo... with analysts expecting a windfall of £30 million within%0D12 months as sponsors line up to cash in on “a match made in heaven.” Daily Mail. 2021.

Bifet A et al. Machine learning and knowledge discovery in databases: Machine learning and knowledge discovery in databases. Springer International Publishing AG, European Conference, ECML PKDD 2015, Porto, Portugal, 2015, Proceedings, Part III, vol. 9286. 2015. https://doi.org/10.1007/978-3-319-23461-8

Behravan I, Razavi SM. A novel machine learning method for estimating football players’ value in the transfer market. Soft Comput. 2021;25(3):2499–511. https://doi.org/10.1007/s00500-020-05319-3.

Article  Google Scholar 

Müller O, Simons A, Weinmann M. Beyond crowd judgments: data-driven estimation of market value in association football. Eur J Oper Res. 2017;263(2):611–24. https://doi.org/10.1016/j.ejor.2017.05.005.

Article  MathSciNet  Google Scholar 

Garcia-del-Barrio P, Pujol F. Hidden monopsony rents in winner-take-all markets — sport and economic contribution of Spanish soccer players. Manag Decis Econ. 2007;28:57–70. https://doi.org/10.1002/mde.1313.

Article  Google Scholar 

Herm S, Callsen-Bracker H-M, Kreis H. When the crowd evaluates soccer players’ market values: accuracy and evaluation attributes of an online community. Sport Manag Rev. 2014;17(4):484–92. https://doi.org/10.1016/j.smr.2013.12.006.

Article  Google Scholar 

Barbuscak L. What makes a soccer player expensive? Analyzing the transfer activity of the richest soccer. Augsbg Honor Rev. 2018;11(1):5.

Google Scholar 

Carmichael F, Forrest D, Simmons R. The labour market in association football: who gets transferred and for how much? Bull Econ Res. 1999;51(2):125–50. https://doi.org/10.1111/1467-8586.00075.

Article  Google Scholar 

Frick B. The football players’ labor market: empirical evidence from the major European leagues. Scott J Polit Econ. 2007;54(3):422–46.

Article  Google Scholar 

Rosen S. The economics of superstars. Am Econ Rev. 1981;71(5):845–58.

Google Scholar 

Adler M. Stardom and talent. Am Econ Rev. 1985;75:208–12.

Google Scholar 

Ferreira MSBP. The impact of performance measures in football players’ Transfer market value, (Master’s thesis, Universidade NOVA de Lisboa (Portugal)). 2022.

Garcia-del-Barrio P, Pujol F. Hidden monopsony rents in winner-take-all markets—sport and economic contribution of Spanish soccer players. Manag Decis Econ. 2007;28(1):57–70. https://doi.org/10.1002/mde.1313.

Article  Google Scholar 

Kiefer S. The impact of the Euro 2012 on popularity and market value of football players. Diskussionspapier des Instituts für Organisationsökonomik (No. 11/2012), 2012, https://hdl.handle.net/10419/67719

Hofmann J, Schnittka O, Johnen M, Kottemann P. Talent or popularity: what drives market value and brand image for human brands? J Bus Res. 2021;124:748–58. https://doi.org/10.1016/j.jbusres.2019.03.045.

Article  Google Scholar 

Singh P, Lamba PS. Influence of crowdsourcing, popularity and previous year statistics in market value estimation of football players. J Discret Math Sci Cryptogr. 2019;22(2):113–26. https://doi.org/10.1080/09720529.2019.1576333.

Article  MathSciNet  Google Scholar 

Goes FR, et al. Unlocking the potential of big data to support tactical performance analysis in professional soccer: a systematic review. Eur J Sport Sci. 2021;21(4):481–96. https://doi.org/10.1080/17461391.2020.1747552.

Article  Google Scholar 

Memmert D, Raabe D. Data analytics in football: positional data collection, modelling and analysis. Routledge. 2018. https://doi.org/10.4324/9781351210164.

Article  Google Scholar 

Teixeira JE, et al. Data mining paths for standard weekly training load in sub-elite young football players: a machine learning approach. J Funct Morphol Kinesiol. 2024;9(3):114. https://doi.org/10.3390/jfmk9030114.

Article  Google Scholar 

Mandadapu P. The evolution of football betting-a machine learning approach to match outcome forecasting and bookmaker odds estimation. 2021. Available from: https://arxiv.org/abs/2403.16282.

Yang Y, Koenigstorfer J, Pawlowski T. Predicting transfer fees in professional European football before and during COVID-19 using machine learning. Eur Sport Manag Q. 2024;24(3):603–23. https://doi.org/10.1080/16184742.2022.2153898.

Article  Google Scholar 

El-Kenawy E-SM, Khodadadi N, Mirjalili S, Abdelhamid AA, Eid MM, Ibrahim A. Greylag goose optimization: nature-inspired optimization algorithm. Expert Syst Appl. 2024;238:122147. https://doi.org/10.1016/j.eswa.2023.122147.

Article  Google Scholar 

Ibrahim A, Khodadadi E, Khodadadi E, Dutta PK, Bailek N, Abdelhamid AA. Apple perfection: assessing Apple quality with waterwheel plant algorithm for feature selection and logistic regression for classification. J Artif Intell Eng Pract. 2024;1(1):34–48. https://doi.org/10.21608/jaiep.2024.355003.

Article  Google Scholar 

El-Kenawy ESM, et al. Football optimization algorithm (FbOA): a novel metaheuristic inspired by team strategy dynamics. J Artif Intell Metaheuristics. 2024;8:21–38. https://doi.org/10.54216/JAIM.080103.

Article  Google Scholar 

Morciano G, Zingoni A, Calabrò G. Optimization and comparison of machine learning algorithms for the prediction of the performance of football players. Neural Comput Appl. 2024;36(31):19653–66. https://doi.org/10.1007/s00521-024-10260-9.

Article  Google Scholar 

Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR, editors. Explainable AI: interpreting, explaining and visualizing deep learning. Springer Nature. 2019. https://doi.org/10.1007/978-3-030-28954-6.

Moustakidis S, Plakias S, Kokkotis C, Tsatalas T, Tsaopoulos D. Predicting football team performance with explainable ai: leveraging shap to identify key team-level performance metrics. Futur Internet. 2023;15(5):174. https://doi.org/10.3390/fi15050174.

Article  Google Scholar 

Plakias S, Kokkotis C, Pantazis D, Tsatalas T. Comparative analysis of key performance indicators in Euroleague and national basketball leagues. J Phys Educ Sport. 2024;24(6):1360–72. https://doi.org/10.7752/jpes.2024.06154.

Article  Google Scholar 

Ren Y, Susnjak T. Predicting football match outcomes with explainable machine learning and the Kelly index. 2022. Available from: https://arxiv.org/abs/2211.15734.

Geurkink Y, Boone J, Verstockt S, Bourgois JG. Machine learning-based identification of the strongest predictive variables of winning and losing in Belgian professional soccer. Appl Sci. 2021;11(5):2378. https://doi.org/10.3390/app11052378.

Article  Google Scholar 

Plakias S, Kokkotis C, Mitrotasios M, Armatas V, Tsatalas T, Giakas G. Identifying key factors for securing a champions league position in French Ligue 1 using explainable machine learning techniques. Appl Sci. 2024;14(18):8375. https://doi.org/10.3390/app14188375.

Article  Google Scholar 

FootballPlayersDataset. [Online]. Available: https://www.openml.org/search?type=data&status=active&id=43604. Accessed 20 Oct 2024

Kirschstein T, Liebscher S. Assessing the market values of soccer players–a robust analysis of data from German 1. and 2. Bundesliga. J Appl Stat. 2019;46(7):1336–49. https://doi.org/10.1080/02664763.2018.1540689.

Article  MathSciNet  Google Scholar 

Goswami S, Chakrabarti A. Feature selection: a practitioner view. Int J Inf Technol Comput Sci. 2014;6(11):66. https://doi.org/10.5815/ijitcs.2014.11.10.

Article  Google Scholar 

Akinwande MO, Dikko HG, Samson A. Variance inflation factor: as a condition for the inclusion of suppressor variable (s) in regression analysis. Open J Stat. 2015;5(07):754. https://doi.org/10.4236/ojs.2015.57075.

Article  Google Scholar 

Hall MA. Correlation-based feature selection for machine learning. PhD diss, The University of Waikato; 1999.

Swingle B. Renyi entropy, mutual information, and fluctuation properties of Fermi liquids. Phys Rev B. 2010;86. https://doi.org/10.1103/PhysRevB.86.045109.

Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;69:66138. https://doi.org/10.1103/PhysRevE.69.066138.

Article  MathSciNet  Google Scholar 

Hwang C-L, Yoon K, Hwang C-L, Yoon K. Methods for multiple attribute decision making. Mult Attrib Decis Mak methods Appl A State-of-the-Art Surv. 1981;58–191. https://doi.org/10.1007/978-3-642-48318-9_3.

Franck E, Nüesch S. Talent and/or popularity: what does it take to be a superstar? Econ Inq. 2012;50(1):202–16. https://doi.org/10.1111/j.1465-7295.2010.00360.x.

Article  Google Scholar 

Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794. https://doi.org/10.1145/2939672.2939785.

Schapire RE. The strength of weak learnability. Mach Learn. 1990;5:197–227. https://doi.org/10.1007/BF00116037.

Article  Google Scholar 

Freund Y, Schapire R, Abe N. A short introduction to boosting. J-Japanese Soc. 1999;14(771–780):1612.

Ying C, Qi-Guang M, Jia-Chen L, Lin G. Advance and prospects of AdaBoost algorithm. Acta Autom Sin. 2013;39(6):745–58. https://doi.org/10.1016/S1874-1029(13)60052-X.

Article  Google Scholar 

Schapire RE. Explaining adaboost. Empir. Inference Festschrift Honor Vladimir N. Vapnik, 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 37–52.

Comments (0)

No login
gif