Quantitative phosphoproteomics reveals that nestin is a downstream target of dual leucine zipper kinase during retinoic acid-induced neuronal differentiation of Neuro-2a cells

Kamiguchi H. The role of cell adhesion molecules in axon growth and guidance. Adv Exp Med Biol. 2007;621:95–103.

Article  PubMed  Google Scholar 

Polleux F, Snider W. Initiating and growing an axon. Cold Spring Harb Perspect Biol. 2010;2:a001925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci. 2012;4:1–12.

Article  Google Scholar 

Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002;3:663–72.

Article  CAS  PubMed  Google Scholar 

Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci. 2014;15:285–99.

Article  CAS  PubMed  Google Scholar 

Jin Y, Zheng B, Multitasking. Dual leucine Zipper-Bearing kinases in neuronal development and stress management. Annu Rev Cell Dev Biol. 2019;35:501–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai S, Cui DF, Miyata T, Ogawa M, Kiyonari H, Suda Y, et al. The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci. 2006;26:11992–2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron. 2012;74:1015–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A. 2013;110:4039–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB et al. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife. 2016;5.

Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, Diantonio A. A dual leucine kinase-dependent axon self-destruction program promotes wallerian degeneration. Nat Neurosci. 2009;12:387–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pozniak CD, Sengupta Ghosh A, Gogineni A, Hanson JE, Lee S-H, Larson JL, et al. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. J Exp Med. 2013;210:2553–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Welsbie DSSDS, Yang Z, Ge Y, Mitchell KLKLL, Zhou X, Martin SEESE, et al. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A. 2013;110:4045–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, et al. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med. 2017;9:eaag0394.

Article  PubMed  Google Scholar 

Eto K, Kawauchi T, Osawa M, Tabata H, Nakajima K. Role of dual leucine zipper-bearing kinase (DLK/MUK/ZPK) in axonal growth. Neurosci Res. 2010;66:37–45.

Article  CAS  PubMed  Google Scholar 

Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, et al. DCX, a new mediator of the JNK pathway. EMBO J. 2004;23:823–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci. 2003;23:9479–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol. 2001;155:65–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raivich G. c-Jun expression, activation and function in neural cell death, inflammation and repair. J Neurochem. 2008;107:898–906.

Article  CAS  PubMed  Google Scholar 

Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A. 2011;108:6282–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blondeau A, Lucier J-FJ-F, Matteau D, Dumont L, Rodrigue S, Jacques, et al. Dual leucine zipper kinase regulates expression of axon guidance genes in mouse neuronal cells. Neural Dev. 2016;11:13.

Article  PubMed  PubMed Central  Google Scholar 

Lowery J, Kuczmarski ER, Herrmann H, Goldman RD. Intermediate filaments play a pivotal role in regulating cell architecture and function. J Biol Chem. 2015;290:17145–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and Nestin. Cells. 2019;8:497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, et al. Lentivirus-delivered stable gene Silencing by RNAi in primary cells. RNA. 2003;9:493–501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daviau A, Couture J-PJP, Blouin R. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest. Biochem Biophys Res Commun. 2011;413:282–7.

Article  CAS  PubMed  Google Scholar 

Choi S, Kelber J, Jiang X, Strnadel J, Fujimura K, Pasillas M et al. Procedures for the biochemical enrichment and proteomic analysis of the cytoskeletome. Anal Biochem. 2014;446.

Bourassa S, Fournier F, Nehmé B, Kelly I, Tremblay A, Lemelin V, et al. Evaluation of iTRAQ and SWATH-MS for the quantification of proteins associated with insulin resistance in human duodenal biopsy samples. PLoS ONE. 2015;10:e0125934.

Article  PubMed  PubMed Central  Google Scholar 

Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, et al. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteom. 2016;145:91–102.

Article  CAS  Google Scholar 

Rauniyar N. Parallel reaction monitoring: A targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci. 2015;16:28566–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pino LK, Searle BC, Bollinger JG, Nunn B, Maclean B, Maccoss MJ. The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2017. https://doi.org/10.1002/mas.21540.

Article  PubMed  PubMed Central  Google Scholar 

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19.

Article 

Comments (0)

No login
gif