Kamiguchi H. The role of cell adhesion molecules in axon growth and guidance. Adv Exp Med Biol. 2007;621:95–103.
Polleux F, Snider W. Initiating and growing an axon. Cold Spring Harb Perspect Biol. 2010;2:a001925.
Article CAS PubMed PubMed Central Google Scholar
Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci. 2012;4:1–12.
Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002;3:663–72.
Article CAS PubMed Google Scholar
Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci. 2014;15:285–99.
Article CAS PubMed Google Scholar
Jin Y, Zheng B, Multitasking. Dual leucine Zipper-Bearing kinases in neuronal development and stress management. Annu Rev Cell Dev Biol. 2019;35:501–21.
Article CAS PubMed PubMed Central Google Scholar
Hirai S, Cui DF, Miyata T, Ogawa M, Kiyonari H, Suda Y, et al. The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci. 2006;26:11992–2002.
Article CAS PubMed PubMed Central Google Scholar
Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron. 2012;74:1015–22.
Article CAS PubMed PubMed Central Google Scholar
Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A. 2013;110:4039–44.
Article CAS PubMed PubMed Central Google Scholar
Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB et al. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife. 2016;5.
Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, Diantonio A. A dual leucine kinase-dependent axon self-destruction program promotes wallerian degeneration. Nat Neurosci. 2009;12:387–9.
Article CAS PubMed PubMed Central Google Scholar
Pozniak CD, Sengupta Ghosh A, Gogineni A, Hanson JE, Lee S-H, Larson JL, et al. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. J Exp Med. 2013;210:2553–67.
Article CAS PubMed PubMed Central Google Scholar
Welsbie DSSDS, Yang Z, Ge Y, Mitchell KLKLL, Zhou X, Martin SEESE, et al. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A. 2013;110:4045–50.
Article CAS PubMed PubMed Central Google Scholar
Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, et al. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med. 2017;9:eaag0394.
Eto K, Kawauchi T, Osawa M, Tabata H, Nakajima K. Role of dual leucine zipper-bearing kinase (DLK/MUK/ZPK) in axonal growth. Neurosci Res. 2010;66:37–45.
Article CAS PubMed Google Scholar
Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, et al. DCX, a new mediator of the JNK pathway. EMBO J. 2004;23:823–32.
Article CAS PubMed PubMed Central Google Scholar
Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci. 2003;23:9479–90.
Article CAS PubMed PubMed Central Google Scholar
Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol. 2001;155:65–76.
Article CAS PubMed PubMed Central Google Scholar
Raivich G. c-Jun expression, activation and function in neural cell death, inflammation and repair. J Neurochem. 2008;107:898–906.
Article CAS PubMed Google Scholar
Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A. 2011;108:6282–7.
Article CAS PubMed PubMed Central Google Scholar
Blondeau A, Lucier J-FJ-F, Matteau D, Dumont L, Rodrigue S, Jacques, et al. Dual leucine zipper kinase regulates expression of axon guidance genes in mouse neuronal cells. Neural Dev. 2016;11:13.
Article PubMed PubMed Central Google Scholar
Lowery J, Kuczmarski ER, Herrmann H, Goldman RD. Intermediate filaments play a pivotal role in regulating cell architecture and function. J Biol Chem. 2015;290:17145–53.
Article CAS PubMed PubMed Central Google Scholar
Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and Nestin. Cells. 2019;8:497.
Article CAS PubMed PubMed Central Google Scholar
Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, et al. Lentivirus-delivered stable gene Silencing by RNAi in primary cells. RNA. 2003;9:493–501.
Article CAS PubMed PubMed Central Google Scholar
Daviau A, Couture J-PJP, Blouin R. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest. Biochem Biophys Res Commun. 2011;413:282–7.
Article CAS PubMed Google Scholar
Choi S, Kelber J, Jiang X, Strnadel J, Fujimura K, Pasillas M et al. Procedures for the biochemical enrichment and proteomic analysis of the cytoskeletome. Anal Biochem. 2014;446.
Bourassa S, Fournier F, Nehmé B, Kelly I, Tremblay A, Lemelin V, et al. Evaluation of iTRAQ and SWATH-MS for the quantification of proteins associated with insulin resistance in human duodenal biopsy samples. PLoS ONE. 2015;10:e0125934.
Article PubMed PubMed Central Google Scholar
Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, et al. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteom. 2016;145:91–102.
Rauniyar N. Parallel reaction monitoring: A targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci. 2015;16:28566–81.
Article CAS PubMed PubMed Central Google Scholar
Pino LK, Searle BC, Bollinger JG, Nunn B, Maclean B, Maccoss MJ. The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2017. https://doi.org/10.1002/mas.21540.
Article PubMed PubMed Central Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19.
Comments (0)