Adjunctive beneficial effect of c-di-GMP, a STING agonist, in enhancing protective efficacy of TLR4-adjuvanted tuberculosis subunit vaccine formulations

World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization; 2023.

Google Scholar 

Comella-Del-Barrio P, De Souza-Galvão ML, Prat-Aymerich C, Domínguez J. Impact of COVID-19 on tuberculosis control. Arch Bronconeumol. 2021;57:5–6.

Article  PubMed  Google Scholar 

Kwon KW, Choi HG, Kim KS, Park SA, Kim HJ, Shin SJ. BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice. NPJ Vaccines. 2024;9(1):55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346(8986):1339–45.

Article  CAS  PubMed  Google Scholar 

Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367(9517):1173–80.

Article  PubMed  Google Scholar 

Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 2014;58(4):470–80.

Article  PubMed  Google Scholar 

Kaufmann SH, Evans TG, Hanekom WA. Tuberculosis vaccines: time for a global strategy. Sci Transl Med. 2015;7(276):2768.

Article  Google Scholar 

Weerasuriya CK, Clark RA, White RG, Harris RC. New tuberculosis vaccines: advances in clinical development and modelling. J Intern Med. 2020;288(6):661–81.

Article  CAS  PubMed  Google Scholar 

Ji Z, Jian M, Chen T, Luo L, Li L, Dai X, et al. Immunogenicity and Safety of the M72/AS01(E) candidate vaccine against tuberculosis: a meta-analysis. Front Immunol. 2019;10:2089.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodo MJ, Rozot V, Nemes E, Dintwe O, Hatherill M, Little F, et al. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog. 2019;15(3): e1007643.

Article  PubMed  PubMed Central  Google Scholar 

Junqueira-Kipnis AP, Marques Neto LM, Kipnis A. Role of fused Mycobacterium tuberculosis immunogens and adjuvants in modern tuberculosis vaccines. Front Immunol. 2014;5:188.

Article  PubMed  PubMed Central  Google Scholar 

Kwon KW, Kim WS, Kim H, Han SJ, Hahn MY, Lee JS, et al. Novel vaccine potential of Rv3131, a DosR regulon-encoded putative nitroreductase, against hyper-virulent Mycobacterium tuberculosis strain K. Sci Rep. 2017;7:44151.

Article  PubMed  PubMed Central  Google Scholar 

Nandakumar S, Kannanganat S, Posey JE, Amara RR, Sable SB. Attrition of T-cell functions and simultaneous upregulation of inhibitory markers correspond with the waning of BCG-induced protection against tuberculosis in mice. PLoS ONE. 2014;9(11): e113951.

Article  PubMed  PubMed Central  Google Scholar 

Derrick SC, Yabe IM, Yang A, Morris SL. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine. 2011;29(16):2902–9.

Article  CAS  PubMed  Google Scholar 

Gates. Wellcome rekindle TB vaccine. Nat Biotechnol. 2023;41(8):1039.

Article  Google Scholar 

Tozer L. Promising tuberculosis vaccine gets US$550-million shot in the arm. Nature. 2023. https://doi.org/10.1038/d41586-023-02171-x.

Article  PubMed  Google Scholar 

Schrager LK, Vekemens J, Drager N, Lewinsohn DM, Olesen OF. The status of tuberculosis vaccine development. Lancet Infect Dis. 2020;20(3):e28–37.

Article  CAS  PubMed  Google Scholar 

Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloom BR. New promise for vaccines against tuberculosis. N Engl J Med. 2018;379(17):1672–4.

Article  PubMed  Google Scholar 

Quan DH, Counoupas C, Nagalingam G, Pinto R, Petrovsky N, Britton WJ, et al. Advax adjuvant formulations promote protective immunity against aerosol Mycobacterium tuberculosis in the absence of deleterious inflammation and reactogenicity. Vaccine. 2021;39(14):1990–6.

Article  CAS  PubMed  Google Scholar 

Franco AR, Peri F. Developing new anti-tuberculosis vaccines: focus on adjuvants. Cells. 2021. https://doi.org/10.3390/cells10010078.

Article  PubMed  PubMed Central  Google Scholar 

Chen W, Kuolee R, Yan H. The potential of 3’,5’-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine. 2010;28(18):3080–5.

Article  CAS  PubMed  Google Scholar 

Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A. Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines. 2011;10(7):1053–61.

Article  CAS  PubMed  Google Scholar 

Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol. 2020;50: 101431.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan A, Singh VK, Mishra A, Soudani E, Bakhru P, Singh CR, et al. NOD2/RIG-I activating inarigivir adjuvant enhances the efficacy of BCG vaccine against tuberculosis in mice. Front Immunol. 2020;11: 592333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maisonneuve C, Bertholet S, Philpott DJ, De Gregorio E. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci U S A. 2014;111(34):12294–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day CL, Tameris M, Mansoor N, van Rooyen M, de Kock M, Geldenhuys H, et al. Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in South African adults. Am J Respir Crit Care Med. 2013;188(4):492–502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaufmann SH, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis. 2017;56:263–7.

Article  PubMed  Google Scholar 

Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10(4):471–86.

Article  PubMed  Google Scholar 

Kwon KW, Lee A, Larsen SE, Baldwin SL, Coler RN, Reed SG, et al. Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Sci Rep. 2019;9(1):15560.

Article  PubMed  PubMed Central  Google Scholar 

Choi YH, Kang YA, Park KJ, Choi JC, Cho KG, Ko DY, et al. Safety and immunogenicity of the ID93 + GLA-SE tuberculosis vaccine in BCG-Vaccinated healthy adults: a randomized, double-blind, placebo-controlled phase 2 Trial. Infect Dis Ther. 2023;12(6):1605–24.

Article  PubMed  PubMed Central  Google Scholar 

Day TA, Penn-Nicholson A, Luabeya AKK, Fiore-Gartland A, Du Plessis N, Loxton AG, et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir Med. 2021;9(4):373–86.

Article  CAS 

Comments (0)

No login
gif