Shen Y, Huang X, Wu J, et al. The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990–2019. Front Endocrinol. 2022;13:882241. https://doi.org/10.3389/fendo.2022.882241
Rosen CJ. The Epidemiology and Pathogenesis of Osteoporosis. In: Feingold KR, Anawalt B, Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed November 15, 2024. http://www.ncbi.nlm.nih.gov/books/NBK279134/
Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MD, López-Ruiz E. Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci. 2022;23(16):9465. https://doi.org/10.3390/ijms23169465
Article CAS PubMed PubMed Central Google Scholar
Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. JBJS. 2007;89(4):780. https://doi.org/10.2106/JBJS.F.00222
Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Jt J. 2016;98(4):461–7. https://doi.org/10.1302/0301-620X.98B4.37201
Berry DJ. Epidemiology: Hip and Knee. Orthop Clin North Am. 1999;30(2):183–90. https://doi.org/10.1016/S0030-5898(05)70073-0
Article CAS PubMed Google Scholar
Schmidt AH, Kyle RF. Periprosthetic Fractures of the Femur. Orthop Clin. 2002;33(1):143–52. https://doi.org/10.1016/S0030-5898(03)00077-4
Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic Femoral Fractures: Classification and Demographics of 1049 Periprosthetic Femoral Fractures from the Swedish National Hip Arthroplasty Register. J Arthroplasty. 2005;20(7):857–65. https://doi.org/10.1016/j.arth.2005.02.001
Malchau H, Herberts P, Eisler T, Garellick G, Söderman P. The Swedish Total Hip Replacement Register. JBJS. 2002;84:S2.
Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM. Risk factors for Periprosthetic Fractures of the Hip: A Survivorship Analysis. Clin Orthop Relat Res. 2008;466(7):1652. https://doi.org/10.1007/s11999-008-0289-1
Article CAS PubMed PubMed Central Google Scholar
Lindahl H, Oden A, Garellick G, Malchau H. The excess mortality due to periprosthetic femur fracture. A study from the Swedish national hip arthroplasty register. Bone. 2007;40(5):1294–8. https://doi.org/10.1016/j.bone.2007.01.003
Article CAS PubMed Google Scholar
Bhattacharyya T, Chang D, Meigs JB, Estok DMI, Malchau H. Mortality After Periprosthetic Fracture of the Femur. JBJS. 2007;89(12):2658. https://doi.org/10.2106/JBJS.F.01538
Kemmak AR, Rezapour A, Jahangiri R, Nikjoo S, Farabi H, Soleimanpour S. Economic burden of osteoporosis in the world: A systematic review. Med J Islam Repub Iran. 2020;34:154. https://doi.org/10.34171/mjiri.34.154
Ding X, Liu B, Huo J, et al. Risk factors affecting the incidence of postoperative periprosthetic femoral fracture in primary hip arthroplasty patients: a retrospective study. Am J Transl Res. 2023;15(2):1374–85.
PubMed PubMed Central Google Scholar
Ritter J, Alimy AR, Simon A, et al. Patients with Periprosthetic Femoral Hip Fractures are Commonly Classified as Having Osteoporosis Based on DXA Measurements. Calcif Tissue Int. 2024;115(2):142–9. https://doi.org/10.1007/s00223-024-01237-w
Article CAS PubMed PubMed Central Google Scholar
Holzer LA, Borotschnig L, Holzer G. Evaluation of FRAX in patients with periprosthetic fractures following primary total hip and knee arthroplasty. Sci Rep. 2023;13(1):7145. https://doi.org/10.1038/s41598-023-34230-8
Article CAS PubMed PubMed Central Google Scholar
Frenzel S, Vécsei V, Negrin L. Periprosthetic femoral fractures—incidence, classification problems and the proposal of a modified classification scheme. Int Orthop. 2015;39(10):1909–20. https://doi.org/10.1007/s00264-015-2967-4
Aro HT, Alm JJ, Moritz N, Mäkinen TJ, Lankinen P. Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: A 2-year RSA study of 39 patients. Acta Orthop. 2012;83(2):107–14. https://doi.org/10.3109/17453674.2012.678798
Article PubMed PubMed Central Google Scholar
Hopman SR, de Windt TS, van Erp JHJ, Bekkers JEJ, de Gast A. Uncemented total hip arthroplasty; increased risk of early periprosthetic fracture requiring revision surgery in elderly females. J Orthop. 2021;25:40–4. https://doi.org/10.1016/j.jor.2021.03.025
Article CAS PubMed PubMed Central Google Scholar
Jeong S, Lee JW, Boucher HR. The Effect of Preoperative Bisphosphonate Use on Total Hip Arthroplasty Outcomes. J Arthroplasty. 2023;38(11):2393-2397.e2. https://doi.org/10.1016/j.arth.2023.05.027
Binkley N, Nickel B, Anderson PA. Periprosthetic fractures: an unrecognized osteoporosis crisis. Osteoporos Int. 2023;34(6):1055–64. https://doi.org/10.1007/s00198-023-06695-w
Hailer NP, Garellick G, Kärrholm J. 2010 Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 34–41. https://doi.org/10.3109/17453671003685400
Thien TM, Chatziagorou G, Garellick G, et al. Periprosthetic Femoral Fracture within Two Years After Total Hip Replacement: Analysis of 437,629 Operations in the Nordic Arthroplasty Register Association Database. JBJS. 2014;96(19):e167. https://doi.org/10.2106/JBJS.M.00643
Blankstein M, Lentine B, Nelms NJ. The Use of Cement in Hip Arthroplasty: A Contemporary Perspective. J Am Acad Orthop Surg. 2020;28(14):e586–94. https://doi.org/10.5435/JAAOS-D-19-00604
Springer BD, Etkin CD, Shores PB, Gioe TJ, Lewallen DG, Bozic KJ. Perioperative Periprosthetic Femur Fractures are Strongly Correlated With Fixation Method: an Analysis From the American Joint Replacement Registry. J Arthroplasty. 2019;34(7):S352–4. https://doi.org/10.1016/j.arth.2019.02.004
Rogmark C, Fenstad AM, Leonardsson O, et al. Posterior approach and uncemented stems increases the risk of reoperation after hemiarthroplasties in elderly hip fracture patients: An analysis of 33,205 procedures in the Norwegian and Swedish national registries. Acta Orthop. 2014;85(1):18–25.
Article PubMed PubMed Central Google Scholar
Clarke B. Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. 2008;3:S131. https://doi.org/10.2215/CJN.04151206
Article CAS PubMed PubMed Central Google Scholar
Göthlin G, Ericsson JLE. The Osteoclast: Review of Ultrastructure, Origin, and Structure-function Relationship. Clin Orthop Relat Res. 1976;120:201.
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. https://doi.org/10.1038/nature01658
Article CAS PubMed Google Scholar
Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64. https://doi.org/10.1016/j.bone.2006.09.023
Article CAS PubMed Google Scholar
Zhu L, Tang Y, Li XY, et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med. 2020;12(529):eaaw6143. https://doi.org/10.1126/scitranslmed.aaw6143
Article CAS PubMed PubMed Central Google Scholar
Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters.’ Trends Mol Med. 2014;20(8):449–59. https://doi.org/10.1016/j.molmed.2014.06.001
Comments (0)