The Role of Osteoporosis in Total Hip Arthroplasty Periprosthetic Fractures and Current Management Strategies: a Review

Shen Y, Huang X, Wu J, et al. The Global Burden of Osteoporosis, Low Bone Mass, and Its Related Fracture in 204 Countries and Territories, 1990–2019. Front Endocrinol. 2022;13:882241. https://doi.org/10.3389/fendo.2022.882241

Article  Google Scholar 

Rosen CJ. The Epidemiology and Pathogenesis of Osteoporosis. In: Feingold KR, Anawalt B, Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed November 15, 2024. http://www.ncbi.nlm.nih.gov/books/NBK279134/

Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MD, López-Ruiz E. Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci. 2022;23(16):9465. https://doi.org/10.3390/ijms23169465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. JBJS. 2007;89(4):780. https://doi.org/10.2106/JBJS.F.00222

Article  Google Scholar 

Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Jt J. 2016;98(4):461–7. https://doi.org/10.1302/0301-620X.98B4.37201

Article  Google Scholar 

Berry DJ. Epidemiology: Hip and Knee. Orthop Clin North Am. 1999;30(2):183–90. https://doi.org/10.1016/S0030-5898(05)70073-0

Article  CAS  PubMed  Google Scholar 

Schmidt AH, Kyle RF. Periprosthetic Fractures of the Femur. Orthop Clin. 2002;33(1):143–52. https://doi.org/10.1016/S0030-5898(03)00077-4

Article  Google Scholar 

Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic Femoral Fractures: Classification and Demographics of 1049 Periprosthetic Femoral Fractures from the Swedish National Hip Arthroplasty Register. J Arthroplasty. 2005;20(7):857–65. https://doi.org/10.1016/j.arth.2005.02.001

Article  PubMed  Google Scholar 

Malchau H, Herberts P, Eisler T, Garellick G, Söderman P. The Swedish Total Hip Replacement Register. JBJS. 2002;84:S2.

Article  Google Scholar 

Cook RE, Jenkins PJ, Walmsley PJ, Patton JT, Robinson CM. Risk factors for Periprosthetic Fractures of the Hip: A Survivorship Analysis. Clin Orthop Relat Res. 2008;466(7):1652. https://doi.org/10.1007/s11999-008-0289-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindahl H, Oden A, Garellick G, Malchau H. The excess mortality due to periprosthetic femur fracture. A study from the Swedish national hip arthroplasty register. Bone. 2007;40(5):1294–8. https://doi.org/10.1016/j.bone.2007.01.003

Article  CAS  PubMed  Google Scholar 

Bhattacharyya T, Chang D, Meigs JB, Estok DMI, Malchau H. Mortality After Periprosthetic Fracture of the Femur. JBJS. 2007;89(12):2658. https://doi.org/10.2106/JBJS.F.01538

Article  Google Scholar 

Kemmak AR, Rezapour A, Jahangiri R, Nikjoo S, Farabi H, Soleimanpour S. Economic burden of osteoporosis in the world: A systematic review. Med J Islam Repub Iran. 2020;34:154. https://doi.org/10.34171/mjiri.34.154

Article  Google Scholar 

Ding X, Liu B, Huo J, et al. Risk factors affecting the incidence of postoperative periprosthetic femoral fracture in primary hip arthroplasty patients: a retrospective study. Am J Transl Res. 2023;15(2):1374–85.

PubMed  PubMed Central  Google Scholar 

Ritter J, Alimy AR, Simon A, et al. Patients with Periprosthetic Femoral Hip Fractures are Commonly Classified as Having Osteoporosis Based on DXA Measurements. Calcif Tissue Int. 2024;115(2):142–9. https://doi.org/10.1007/s00223-024-01237-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holzer LA, Borotschnig L, Holzer G. Evaluation of FRAX in patients with periprosthetic fractures following primary total hip and knee arthroplasty. Sci Rep. 2023;13(1):7145. https://doi.org/10.1038/s41598-023-34230-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frenzel S, Vécsei V, Negrin L. Periprosthetic femoral fractures—incidence, classification problems and the proposal of a modified classification scheme. Int Orthop. 2015;39(10):1909–20. https://doi.org/10.1007/s00264-015-2967-4

Article  PubMed  Google Scholar 

Aro HT, Alm JJ, Moritz N, Mäkinen TJ, Lankinen P. Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: A 2-year RSA study of 39 patients. Acta Orthop. 2012;83(2):107–14. https://doi.org/10.3109/17453674.2012.678798

Article  PubMed  PubMed Central  Google Scholar 

Hopman SR, de Windt TS, van Erp JHJ, Bekkers JEJ, de Gast A. Uncemented total hip arthroplasty; increased risk of early periprosthetic fracture requiring revision surgery in elderly females. J Orthop. 2021;25:40–4. https://doi.org/10.1016/j.jor.2021.03.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong S, Lee JW, Boucher HR. The Effect of Preoperative Bisphosphonate Use on Total Hip Arthroplasty Outcomes. J Arthroplasty. 2023;38(11):2393-2397.e2. https://doi.org/10.1016/j.arth.2023.05.027

Article  PubMed  Google Scholar 

Binkley N, Nickel B, Anderson PA. Periprosthetic fractures: an unrecognized osteoporosis crisis. Osteoporos Int. 2023;34(6):1055–64. https://doi.org/10.1007/s00198-023-06695-w

Article  PubMed  Google Scholar 

Hailer NP, Garellick G, Kärrholm J. 2010 Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 34–41. https://doi.org/10.3109/17453671003685400

Thien TM, Chatziagorou G, Garellick G, et al. Periprosthetic Femoral Fracture within Two Years After Total Hip Replacement: Analysis of 437,629 Operations in the Nordic Arthroplasty Register Association Database. JBJS. 2014;96(19):e167. https://doi.org/10.2106/JBJS.M.00643

Article  Google Scholar 

Blankstein M, Lentine B, Nelms NJ. The Use of Cement in Hip Arthroplasty: A Contemporary Perspective. J Am Acad Orthop Surg. 2020;28(14):e586–94. https://doi.org/10.5435/JAAOS-D-19-00604

Article  PubMed  Google Scholar 

Springer BD, Etkin CD, Shores PB, Gioe TJ, Lewallen DG, Bozic KJ. Perioperative Periprosthetic Femur Fractures are Strongly Correlated With Fixation Method: an Analysis From the American Joint Replacement Registry. J Arthroplasty. 2019;34(7):S352–4. https://doi.org/10.1016/j.arth.2019.02.004

Article  PubMed  Google Scholar 

Rogmark C, Fenstad AM, Leonardsson O, et al. Posterior approach and uncemented stems increases the risk of reoperation after hemiarthroplasties in elderly hip fracture patients: An analysis of 33,205 procedures in the Norwegian and Swedish national registries. Acta Orthop. 2014;85(1):18–25.

Article  PubMed  PubMed Central  Google Scholar 

Clarke B. Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. 2008;3:S131. https://doi.org/10.2215/CJN.04151206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Göthlin G, Ericsson JLE. The Osteoclast: Review of Ultrastructure, Origin, and Structure-function Relationship. Clin Orthop Relat Res. 1976;120:201.

Google Scholar 

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. https://doi.org/10.1038/nature01658

Article  CAS  PubMed  Google Scholar 

Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64. https://doi.org/10.1016/j.bone.2006.09.023

Article  CAS  PubMed  Google Scholar 

Zhu L, Tang Y, Li XY, et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med. 2020;12(529):eaaw6143. https://doi.org/10.1126/scitranslmed.aaw6143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters.’ Trends Mol Med. 2014;20(8):449–59. https://doi.org/10.1016/j.molmed.2014.06.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif