Laboratory-based Biomarkers for Risk Prediction, Auxiliary Diagnosis and Post-operative Follow-up of Osteoporotic Fractures

Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–23.

Article  PubMed  Google Scholar 

Pfeifer M, Kohlwey L, Begerow B, Minne HW. Effects of two newly developed spinal orthoses on trunk muscle strength, posture, and quality-of-life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil. 2011;90(10):805–15.

Article  PubMed  Google Scholar 

Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 2021;12:687551.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Sung YK, Choi CB, et al. The frequency of and risk factors for osteoporosis in Korean patients with rheumatoid arthritis. BMC Musculoskelet Disord. 2016;17:98.

Article  PubMed  PubMed Central  Google Scholar 

Nava-Valdivia CA, Ponce-Guarneros JM, Saldana-Cruz AM, et al. Assessment of serum sRANKL, sRANKL/OPG ratio, and other bone turnover markers with the estimated 10-year risk of major and hip osteoporotic fractures in rheumatoid arthritis: A cross-sectional study. Biomed Res Int. 2021;2021:5567666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Wang G, Wu T, Hu J, Mu Y, Gu W. Association of skin autofluorescence with low bone density/osteoporosis and osteoporotic fractures in type 2 diabetes mellitus. J Diabetes. 2022;14(9):571–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lincoln S, Morse LR, Troy K, Mattson N, Nguyen N, Battaglino RA. MicroRNA-148a-3p is a candidate mediator of increased bone marrow adiposity and bone loss following spinal cord injury. Front Endocrinol (Lausanne). 2022;13:910934.

Article  PubMed  PubMed Central  Google Scholar 

Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.

Article  CAS  PubMed  Google Scholar 

Strom O, Borgstrom F, Kanis JA, et al. Osteoporosis: burden, health care provision and opportunities in the EU: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2011;6:59–155.

Article  CAS  PubMed  Google Scholar 

Kanis JA, Norton N, Harvey NC, et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos. 2021;16(1):82.

Article  PubMed  PubMed Central  Google Scholar 

Cheng X, Zhao K, Zha X, et al. Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: A nationwide. Multicenter Study J Bone Miner Res. 2021;36(3):427–35.

Article  CAS  PubMed  Google Scholar 

Ivaska KK, McGuigan FE, Malmgren L, et al. Bone turnover marker profiling and fracture risk in older women: fracture risk from age 75 to 90. Calcif Tissue Int. 2022;111(3):288–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 international society for clinical densitometry position development conference on bone densitometry. J Clin Densitom. 2013;16(4):455–66.

Article  PubMed  Google Scholar 

Faulkner KG. The tale of the T-score: Review and perspective. Osteoporos Int. 2005;16(4):347–52.

Article  PubMed  Google Scholar 

Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.

Article  PubMed  PubMed Central  Google Scholar 

Viswanathan M, Reddy S, Berkman N, et al. Screening to prevent osteoporotic fractures: Updated evidence report and systematic review for the us preventive services task force. JAMA. 2018;319(24):2532–51.

Article  PubMed  Google Scholar 

McCloskey EV, Johansson H, Oden A, Kanis JA. From relative risk to absolute fracture risk calculation: the FRAX algorithm. Curr Osteoporos Rep. 2009;7(3):77–83.

Article  PubMed  Google Scholar 

Kanis JA, Harvey NC, Johansson H, Oden A, McCloskey EV, Leslie WD. Overview of fracture prediction tools. J Clin Densitom. 2017;20(3):444–50.

Article  PubMed  PubMed Central  Google Scholar 

Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 2017;63(2):464–74.

Article  CAS  PubMed  Google Scholar 

Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;26(Suppl 1):1–46.

Article  PubMed  Google Scholar 

Nishizawa Y, Miura M, Ichimura S, et al. Executive summary of the Japan osteoporosis society guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 Edition). Clin Chim Acta. 2019;498:101–7.

Article  CAS  PubMed  Google Scholar 

Zhang J, Hu Y, Cai W. Bone metabolism factors in predicting the risk of osteoporosis fracture in the elderly. BMC Musculoskelet Disord. 2024;25(1):442.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem. 2003;278(19):17491–9.

Article  CAS  PubMed  Google Scholar 

Nakai Y, Kumagai K, Ino Y, et al. Use of data-independent acquisition mass spectrometry to identify an objective serum indicator of the need for osteoporotic therapeutic intervention. J Proteomics. 2024;300:105166.

Article  CAS  PubMed  Google Scholar 

Balemans W, Piters E, Cleiren E, et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif Tissue Int. 2008;82(6):445–53.

Article  CAS  PubMed  Google Scholar 

Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int. 2013;24(2):489–94.

Article  CAS  PubMed  Google Scholar 

Arasu A, Cawthon PM, Lui LY, et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab. 2012;97(6):2027–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasikaran S, Cooper C, Eastell R, et al. International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–4.

Article  CAS  PubMed  Google Scholar 

Zhou J, Liu B, Qin MZ, Liu JP. Fall prevention and anti-osteoporosis in osteopenia patients of 80 years of age and older: A randomized controlled study. Orthop Surg. 2020;12(3):890–9.

Article  PubMed  PubMed Central  Google Scholar 

Fan J, Li N, Gong X, He L. Serum 25-hydroxyvitamin D, bone turnover markers and bone mineral density in postmenopausal women with hip fractures. Clin Chim Acta. 2018;477:135–40.

Article  CAS  PubMed  Google Scholar 

Zhu X, Chen L, Pan L, et al. Correlation between bone mineral density and bone metabolic markers in postmenopausal women with osteoporotic fractures at different C-terminal telopeptide of type 1 collagen levels: A retrospective analysis study. Menopause. 2023;30(11):1139–46.

Comments (0)

No login
gif