Singh L, Brennan TA, Russell E, Kim J-H, Chen Q, Johnson FB, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016;85:29–36.
Article CAS PubMed PubMed Central Google Scholar
Bethel M, Chitteti BR, Srour EF, Kacena MA. The Changing Balance Between Osteoblastogenesis and Adipogenesis in Aging and its Impact on Hematopoiesis. Curr Osteoporos Rep. 2013;11:99–106.
Article PubMed PubMed Central Google Scholar
Chandra A, Rajawat J. Skeletal aging and osteoporosis: mechanisms and therapeutics. Int J Mol Sci. 2021;22:3553.
Article CAS PubMed PubMed Central Google Scholar
Pino A, Rosen CJ, Rodríguez PJ. In Osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res. 2012;45:279–87.
Khosla S. Pathogenesis of Age-Related Bone Loss in Humans. J Gerontol Ser A: Biomed Sci Méd Sci. 2013;68:1226–35.
Khosla S, Melton LJ, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: Is a revision needed? J Bone Miner Res. 2011;26:441–51.
Article CAS PubMed Google Scholar
Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Senescent Osteocytes: Do They Cause Damage and Can They Be Targeted to Preserve the Skeleton? J Bone Miner Res. 2016;31:1917–9.
Carvalho MS, Alves L, Bogalho I, Cabral JMS, da Silva CL. Impact of donor age on the osteogenic supportive capacity of mesenchymal stromal cell-derived extracellular matrix. Front Cell Dev Biol. 2021;9:747521.
Article PubMed PubMed Central Google Scholar
Sroga GE, Vashishth D. Phosphorylation of extracellular bone matrix proteins and its contribution to bone fragility. J Bone Miner Res. 2018;33:2214–29.
Article CAS PubMed Google Scholar
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, et al. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone. 2020;130:115126.
Article CAS PubMed Google Scholar
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol. 2021;519:111052.
Article CAS PubMed Google Scholar
Takigawa M. CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal. 2013;7:191–201.
Article PubMed PubMed Central Google Scholar
Chen P-C, Cheng H-C, Yang S-F, Lin C-W, Tang C-H. The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. BioMed Res Int. 2014;2014:437096.
PubMed PubMed Central Google Scholar
Yeger H, Perbal B. The CCN axis in cancer development and progression. J Cell Commun Signal. 2021;15:491–517.
Article CAS PubMed PubMed Central Google Scholar
MacDonald IJ, Huang C-C, Liu S-C, Lin Y-Y, Tang C-H. Targeting CCN proteins in rheumatoid arthritis and osteoarthritis. Int J Mol Sci. 2021;22:4340.
Article CAS PubMed PubMed Central Google Scholar
Jun J, Lau L. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.
Article CAS PubMed PubMed Central Google Scholar
Yeger H. CCN proteins: opportunities for clinical studies—a personal perspective. J Cell Commun Signal. 2023;17:333–52.
Article CAS PubMed PubMed Central Google Scholar
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal. 2023;17:371–90.
Article CAS PubMed PubMed Central Google Scholar
Giusti V, Scotlandi K. CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal. 2021;15:545–66.
Article CAS PubMed PubMed Central Google Scholar
Maeda A, Ono M, Holmbeck K, Li L, Kilts TM, Kram V, et al. WNT1-induced Secreted Protein-1 (WISP1), a novel regulator of bone turnover and Wnt Signaling*. J Biol Chem. 2015;290:14004–18.
Article CAS PubMed PubMed Central Google Scholar
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, et al. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol. 2022;111:108–32.
Article CAS PubMed PubMed Central Google Scholar
Kuwahara M, Kadoya K, Kondo S, Fu S, Miyake Y, Ogo A, et al. CCN3 (NOV) drives degradative changes in aging articular cartilage. Int J Mol Sci. 2020;21:7556.
Article CAS PubMed PubMed Central Google Scholar
Feng M, Peng H, Yao R, Zhang Z, Mao G, Yu H, et al. Inhibition of cellular communication network factor 1 (CCN1)-driven senescence slows down cartilage inflammaging and osteoarthritis. Bone. 2020;139:115522.
Article CAS PubMed Google Scholar
Tang J, Zhao C, Lin S, Li X, Zhu B, Li Y. Controversial causal association between IGF family members and osteoporosis: a Mendelian randomization study between UK and FinnGen biobanks. Front Endocrinol. 2024;14:1332803.
Brigstock DR. Proposal for a unified CCN nomenclature. Mol Pathol. 2003;56:127–8.
Article CAS PubMed PubMed Central Google Scholar
Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119:4803–10.
Article CAS PubMed Google Scholar
Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011;68:3149–63.
Article CAS PubMed PubMed Central Google Scholar
Grünberg JR, Elvin J, Paul A, Hedjazifar S, Hammarstedt A, Smith U. CCN5/WISP2 and metabolic diseases. J Cell Commun Signal. 2018;12:309–18.
Wiesman KC, Wei L, Baughman C, Russo J, Gray MR, Castellot JJ. CCN5, a secreted protein, localizes to the nucleus. J Cell Commun Signal. 2010;4:91–8.
Article PubMed PubMed Central Google Scholar
Planque N, Li CL, Saule S, Bleau A, Perbal B. Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem. 2006;99:105–16.
Article CAS PubMed Google Scholar
Song MH, Jo Y, Kim Y-K, Kook H, Jeong D, Park WJ. The TSP-1 domain of the matricellular protein CCN5 is essential for its nuclear localization and anti-fibrotic function. PLoS ONE. 2022;17:e0267629.
Comments (0)