Immunomodulatory activities of carbon quantum dots on the primary macrophages and whole splenocytes

Wang Y, Hu A. Immunomodulatory effects of carbon-based nanomaterials. J Mater Chem B. 2014;2(12):1634–43. https://doi.org/10.1039/C4TB00988F.

Article  Google Scholar 

Lim SY, Shen W, Gao Z. Carbon quantum dots: synthesis, properties, and applications in bioimaging and drug delivery. Chem Soc Rev. 2015;44(1):1–22. https://doi.org/10.1039/C4CS00269E.

Article  Google Scholar 

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Anti-inflammatory properties of carbon quantum dots in macrophages. Small. 2015;11(18):2156–63. https://doi.org/10.1002/smll.201402648.

Article  CAS  Google Scholar 

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–84. https://doi.org/10.1038/ni.1863.

Article  CAS  PubMed  Google Scholar 

Kawai T, Akira S. Toll-like receptors and NFκB signaling in immune modulation. Nat Immunol. 2010;11(10):1003–9. https://doi.org/10.1038/ni.1863.

Article  CAS  Google Scholar 

Kavrak B, Yetkin D, Değim İT, et al. Immunomodulatory activities of novel carbon quantum dots on in vitro activated mammalian macrophages. J Mater Res. 2023;38:1730–9. https://doi.org/10.1557/s43578-023-00925-x.

Article  CAS  Google Scholar 

Ayaz F, Alas MO, Genc R. Correction to: differential immunomodulatory effect of carbon dots influenced by the type of surface passivation agent. Inflammation. 2020;43(2):784. https://doi.org/10.1007/s10753-020-01180-6.

Article  PubMed  Google Scholar 

Roy R, Parveen S. Zinc oxide nanoparticles as immune adjuvants: mechanisms and applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020;24: 102240. https://doi.org/10.1016/j.nano.2020.102240.

Zhu S, Meng Q, Wang L, et al. Carbon quantum dots inhibit NFκB signaling in macrophages. Biomaterials. 2017;139:1–12. https://doi.org/10.1016/j.biomaterials.2017.04.032.

Article  CAS  Google Scholar 

Degim IT, Kadioglu D. Cheap, suitable, predictable, and manageable nanoparticles for drug delivery: quantum dots. Curr Drug Deliv. 2013;10(1):32–8. https://doi.org/10.2174/1567201811310010006.

Article  CAS  PubMed  Google Scholar 

Camlik G, Akkol EK, Degim Z, Degim IT. Can carbon quantum dots (CQDs) or boron compounds be an ultimate solution for COVID-19 therapy?. Iran J Pharm Res 2021;20(4):9–20. https://doi.org/10.22037/ijpr.2021.114856.15071.

Wang Y, Hu A, Zhang X. Synthesis and applications of ZnO quantum dots: a review. J Mater Sci. 2017;52(1):1–20. https://doi.org/10.1007/s10853-016-0383-9.

Article  CAS  Google Scholar 

Zhang Y, Li X, Wu Y. Carbon quantum dots: synthesis, properties, and applications. Journal of Materials Chemistry C. 2015;3(33):8528–36. https://doi.org/10.1039/C5TC01758E.

Article  CAS  Google Scholar 

Jiang X, Wang Y, Li M. Quantum dots for bioimaging and therapeutic applications. Nanomaterials. 2018;8(5):342. https://doi.org/10.3390/nano8050342.

Article  CAS  Google Scholar 

Li X, Zhang Y, Wu Y. Synthesis and characterization of carbon quantum dots for biomedical applications. J Mater Chem B. 2016;4(4):689–98. https://doi.org/10.1039/C5TB02020J.

Article  Google Scholar 

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015.

Article  CAS  PubMed  Google Scholar 

Moser M, Leo O, Vray B. Role of toll-like receptors in the immune response. Immunol Lett. 2001;78(1):1–5. https://doi.org/10.1016/S0165-2478(01)00248-6.

Article  Google Scholar 

Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608. https://doi.org/10.1038/nm.3409.

Article  CAS  PubMed  Google Scholar 

Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminum. Nat Rev Immunol. 2009;9(4):287–93. https://doi.org/10.1038/nri2510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motulsky HJ. Intuitive biostatistics: a nonmathematical guide to statistical thinking. Oxford University Press; 2010.

Google Scholar 

Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties, and applications. J Mater Chem. 2019;22(46):24230–53. https://doi.org/10.1039/C2JM34690G.

Article  Google Scholar 

Wang Y, Hu A, Zhang X. Carbon quantum dots: synthesis, properties, and applications. J Mater Chem C. 2020;8(4):1087–101. https://doi.org/10.1039/C9TC06002A.

Article  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. https://doi.org/10.1038/sigtrans.2017.23.

Article  PubMed  PubMed Central  Google Scholar 

Prasad AS. Zinc in human health: effect of zinc on immune cells. Mol Med. 2008;14(5–6):353–7. https://doi.org/10.2119/2008-00033.Prasad.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X. Recent advances in bioapplications of C-dots. Carbon. 2020;143:678–94. https://doi.org/10.1016/j.carbon.2018.11.002.

Article  CAS  Google Scholar 

Ayaz F. The role of Notch3 signaling in T helper cell differentiation and induction of EAE (Doctoral dissertation, University of Massachusetts Amherst) 2016. https://hdl.handle.net/20.500.14394/19774.

Ayaz F, Alaş MÖ, Oğuz M, et al. Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages. Mol Biol Rep. 2019;46:2405–15. https://doi.org/10.1007/s11033-019-04701-1.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif