Hopper AK, Phizicky EM. tRNA transfers to the limelight. Genes Dev. 2003;17(2):162–80. https://doi.org/10.1101/gad.1049103.
Article CAS PubMed Google Scholar
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis. 2023;14(11):748. https://doi.org/10.1038/s41419-023-06250-9.
Article CAS PubMed PubMed Central Google Scholar
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis. 2021;13(1):24. https://doi.org/10.1038/s41419-021-04472-3.
Article CAS PubMed PubMed Central Google Scholar
Krishna S, Raghavan S, DasGupta R, Palakodeti D. tRNA-derived fragments (tRFs): establishing their turf in post-transcriptional gene regulation. Cell Mol Life Sci CMLS. 2021;78(6):2607–19. https://doi.org/10.1007/s00018-020-03720-7.
Article CAS PubMed Google Scholar
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther. 2020;5(1):109. https://doi.org/10.1038/s41392-020-00217-4.
Article CAS PubMed PubMed Central Google Scholar
Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett. 2014;588(23):4297–304. https://doi.org/10.1016/j.febslet.2014.09.001.
Article CAS PubMed PubMed Central Google Scholar
Pandey KK, et al. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. Mol Ther Nucleic Acids. 2021;26:161–73. https://doi.org/10.1016/j.omtn.2021.06.023.
Article CAS PubMed PubMed Central Google Scholar
Li X, et al. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov. 2021;7(1):249. https://doi.org/10.1038/s41420-021-00647-1.
Article CAS PubMed PubMed Central Google Scholar
Zheng J, et al. A 5`-tRNA Derived Fragment NamedtiRNA-Val-CAC-001 Works as a Suppressor in Gastric Cancer. Cancer Manag Res. 2022;14:2323–37. https://doi.org/10.2147/CMAR.S363629.
Article PubMed PubMed Central Google Scholar
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci. 2024;25(14):7666. https://doi.org/10.3390/ijms25147666.
Article CAS PubMed PubMed Central Google Scholar
Cuthrell KM, Tzenios N, Umber J (2023) Burden of Autoimmune Disorders; a review. Asian J Immunol 6(3):1-3
Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023;19(8):509–24. https://doi.org/10.1038/s41581-023-00720-1.
Article CAS PubMed Google Scholar
Ashrafizadeh M, et al. Non-coding RNA-based regulation of inflammation. Semin Immunol. 2022;59:101606. https://doi.org/10.1016/j.smim.2022.101606.
Article CAS PubMed Google Scholar
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol. 2022;23(8):521–40. https://doi.org/10.1038/s41580-022-00474-x.
Article CAS PubMed Google Scholar
Elazazy O, et al. Long non-coding RNAs and rheumatoid arthritis: Pathogenesis and clinical implications. Pathol Res Pract. 2023;246:154512. https://doi.org/10.1016/j.prp.2023.154512.
Article CAS PubMed Google Scholar
Dunaeva M, Blom J, Thurlings R, van Weijsten M, van de Loo FAJ, Pruijn GJM. Circulating tRNA-derived fragments are decreased in patients with rheumatoid arthritis and increased in patients with psoriatic arthritis. Biomark Biochem Indic Expo Response Susceptibility Chem. 2024;29(2):90–9. https://doi.org/10.1080/1354750X.2024.2319297.
Cross T, et al. Non-Coding RNA in Salivary Extracellular Vesicles: A New Frontier in Sjögren’s Syndrome Diagnostics? Int J Mol Sci. 2023;24(17):13409. https://doi.org/10.3390/ijms241713409.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Shen J. Mucosal immunity and tRNA, tRF, and tiRNA. J Mol Med Berl Ger. 2021;99(1):47–56. https://doi.org/10.1007/s00109-020-02008-4.
Yamasaki S, Nakashima M, Ida H. Possible Roles of tRNA Fragments, as New Regulatory ncRNAs, in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci. 2021;22(17):9481. https://doi.org/10.3390/ijms22179481.
Article CAS PubMed PubMed Central Google Scholar
Ormseth MJ, et al. The Endogenous Plasma Small RNAome of Rheumatoid Arthritis. ACR Open Rheumatol. 2020;2(2):97–105. https://doi.org/10.1002/acr2.11098.
Article PubMed PubMed Central Google Scholar
Kfoury YS, et al. tiRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. Cell Stem Cell. 2021;28(12):2090-2103.e9. https://doi.org/10.1016/j.stem.2021.08.014.
Article CAS PubMed Google Scholar
Chiou N-T, Kageyama R, Ansel KM. Selective Export into Extracellular Vesicles and Function of tRNA Fragments during T Cell Activation. Cell Rep. 2018;25(12):3356-3370.e4. https://doi.org/10.1016/j.celrep.2018.11.073.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y-Z, Li Y-Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91–9. https://doi.org/10.3748/wjg.v20.i1.91.
Article CAS PubMed PubMed Central Google Scholar
Ramos GP, Papadakis KA. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin Proc. 2019;94(1):155–65. https://doi.org/10.1016/j.mayocp.2018.09.013.
Article CAS PubMed Google Scholar
Spehlmann ME, Begun AZ, Burghardt J, Lepage P, Raedler A, Schreiber S. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008;14(7):968–76. https://doi.org/10.1002/ibd.20380.
Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34. https://doi.org/10.1038/nature06005.
Article CAS PubMed Google Scholar
Liu JZ, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. https://doi.org/10.1038/ng.3359.
Article CAS PubMed PubMed Central Google Scholar
Yu QT, Saruta M, Avanesyan A, Fleshner PR, Banham AH, Papadakis KA. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13(2):191–9. https://doi.org/10.1002/ibd.20053.
Ding Y, Luan X, Hou J. The critical involvement of monocytes/macrophages in the pathogenesis of primary Sjögren’s syndrome: New evidence from Mendelian randomization and single-cell sequencing. Heliyon. 2024;10(20):e39130. https://doi.org/10.1016/j.heliyon.2024.e39130.
Comments (0)