Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(1):1–13. https://doi.org/10.1101/sqb.1989.054.01.003.
Article PubMed CAS Google Scholar
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. https://doi.org/10.1038/s41577-019-0215-7.
Article PubMed CAS Google Scholar
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103. https://doi.org/10.1038/nri3787.
Article PubMed PubMed Central CAS Google Scholar
Chowdhury D, et al. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell. 2006;23(1):133–42. https://doi.org/10.1016/j.molcel.2006.06.005.
Article PubMed CAS Google Scholar
Repnik U, Česen MH, Turk B. The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 2013;5(1). https://doi.org/10.1101/cshperspect.a008755.
Wu J, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science (1979). 2013;339(6121):826–830. https://doi.org/10.1126/SCIENCE.1229963/SUPPL_FILE/WU.SM.PDF.
Gao D, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341(6148):903–6. https://doi.org/10.1126/SCIENCE.1240933.
Article PubMed CAS Google Scholar
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. Feb.2013;339(6121):786–91. https://doi.org/10.1126/SCIENCE.1232458.
Article PubMed CAS Google Scholar
Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. Apr.2014;54(2):289–96. https://doi.org/10.1016/J.MOLCEL.2014.03.040.
Article PubMed CAS Google Scholar
Li X, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. Dec.2013;39(6):1019–31. https://doi.org/10.1016/J.IMMUNI.2013.10.019.
Article PubMed CAS Google Scholar
Gao P, et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. May2013;153(5):1094–107. https://doi.org/10.1016/J.CELL.2013.04.046.
Article PubMed PubMed Central CAS Google Scholar
Rongvaux A, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. Dec.2014;159(7):1563–77. https://doi.org/10.1016/J.CELL.2014.11.037.
Article PubMed PubMed Central CAS Google Scholar
Mankan AK, et al. Cytosolic RNA:DNA hybrids activate the cGAS –STING axis. EMBO J. Dec.2014;33(24):2937–46. https://doi.org/10.15252/EMBJ.201488726/SUPPL_FILE/EMBJ201488726.REVIEWER_COMMENTS.PDF.
Article PubMed PubMed Central CAS Google Scholar
Zierhut C, Funabiki H. Regulation and consequences of cGAS activation by self-DNA. Trends Cell Biol. Aug.2020;30(8):594. https://doi.org/10.1016/J.TCB.2020.05.006.
Article PubMed PubMed Central CAS Google Scholar
Gao D, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci U S A. Oct.2015;112(42):E5699–705. https://doi.org/10.1073/PNAS.1516465112/SUPPL_FILE/PNAS.201516465SI.PDF.
Article PubMed PubMed Central CAS Google Scholar
Song JX, Villagomes D, Zhao H, Zhu M. cGAS in nucleus: the link between immune response and DNA damage repair. Front Immunol. Dec.2022;13:1076784. https://doi.org/10.3389/FIMMU.2022.1076784.
Article PubMed PubMed Central CAS Google Scholar
Wu Y, Song K, Hao W, Li J, Wang L, Li S. Nuclear soluble cGAS senses double-stranded DNA virus infection. Commun Biol 2022;5(1):1–13. https://doi.org/10.1038/s42003-022-03400-1.
Volkman HE, Cambier S, Gray EE, Stetson DB. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 2019;8. https://doi.org/10.7554/ELIFE.47491.
Barnett KC, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell. Mar.2019;176(6):1432. https://doi.org/10.1016/J.CELL.2019.01.049.
Article PubMed PubMed Central CAS Google Scholar
Cao D, Han X, Fan X, Xu RM, Zhang X. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Res. Dec.2020;30(12):1088. https://doi.org/10.1038/S41422-020-00422-4.
Article PubMed PubMed Central CAS Google Scholar
de O. Mann CC, Hopfner K. Nuclear cGAS: guard or prisoner?. EMBO J 2021;40(16):108293. https://doi.org/10.15252/EMBJ.2021108293.
Wu X, et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. Jul.2014;42(13):8243–57. https://doi.org/10.1093/NAR/GKU569.
Article PubMed PubMed Central CAS Google Scholar
Li T, et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science. 2021;371(6535). https://doi.org/10.1126/SCIENCE.ABC5386.
Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res. Oct.2009;37(22):7701–14. https://doi.org/10.1093/NAR/GKP854.
Article PubMed PubMed Central CAS Google Scholar
Wu X, et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. Sep.2014;42(13):8243. https://doi.org/10.1093/NAR/GKU569.
Article PubMed PubMed Central CAS Google Scholar
Kranzusch PJ, Lee ASY, Berger JM, Doudna JA. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. May2013;3(5):1362. https://doi.org/10.1016/J.CELREP.2013.05.008.
Article PubMed PubMed Central CAS Google Scholar
Zhou W, et al. Structure of the human cGAS–DNA complex reveals enhanced control of immune surveillance. Cell. Jul.2018;174(2):300. https://doi.org/10.1016/J.CELL.2018.06.026.
Article PubMed PubMed Central CAS Google Scholar
Zhao Z, Ma Z, Wang B, Guan Y, Su XD, Jiang Z. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2’3’-cGAMP. Cell Rep. 2020;32(7). https://doi.org/10.1016/J.CELREP.2020.108053.
Luecke S, et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. Oct.2017;18(10):1707. https://doi.org/10.15252/EMBR.201744017.
Article PubMed PubMed Central CAS Google Scholar
Mosallanejad K, et al. Species-specific self-DNA detection mechanisms by mammalian cyclic GMP-AMP synthases. Sci Immunol. 2023;8(79):eabp9765. https://doi.org/10.1126/SCIIMMUNOL.ABP9765.
Hall J, et al. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Protein Sci. Dec.2017;26(12):2367. https://doi.org/10.1002/PRO.3304.
Article PubMed PubMed Central CAS Google Scholar
Gao P, et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. May2013;153(5):1094–107. https://doi.org/10.1016/J.CELL.2013.04.046.
Comments (0)