Bauer RM, Johnson MK, Smith LB (2015) Learning novel concepts: a neuroimaging approach. Human Brain Mapping, 36(8):3213–3226. https://doi.org/10.1002/hbm.22846
Beauchet O, Fantino B, Allali G, Muir SW, Montero-Odasso M, Annweiler C (2010) Timed up and go test and risk of falls in older adults: a systematic review. J Nutrition Health Aging 14(10):933–938. https://doi.org/10.1007/s12603-010-0294-8
Dash D, Ferrari P, Angrick M (2020) Decoding speech imagery using MEG. Neuroimage 211:116665. https://doi.org/10.1016/j.neuroimage.2020.116665
Hall CR, Martin KA (1997) Measuring movement imagery abilities: a revision of the movement imagery questionnaire. J Ment Imag 21(1–2):143–154
Hall CR, Pongrac J, Buckolz E (1985) The measurement of imagery ability. Hum Mov Sci 4(2):107–118
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP (2018) Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 94:31–44. https://doi.org/10.1016/j.neubiorev.2018.08.003
Herff C, Heger D, de Pesters A, Telaar D, Brunner P, Schalk G, Schultz T (2016) Brain-to-text: decoding spoken phrases from phone representations in the brain. Front Neurosci 10:429. https://doi.org/10.3389/fnins.2016.00429
Article PubMed PubMed Central Google Scholar
Hétu S, Grégoire M, Saimpont A, Coll M-P, Eugène F, Michon P-E, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37(5):930–949. https://doi.org/10.1016/j.neubiorev.2013.03.017
Ikeda S, Shibata T, Nakano N, Okada Y, Tsuyuguchi N, Kato A, Hara M (2014) Neural decoding of single vowels during covert articulation using electrocorticography. Front Hum Neurosci 8:125. https://doi.org/10.3389/fnhum.2014.00125
Article PubMed PubMed Central Google Scholar
Isaac AR, Marks DF, Russell DG (1986) Measurement of imagery vividness: a test of the validity of the vividness of movement imagery questionnaire (VMIQ). J Ment Imag 10(4):59–72
Itotani K, Taniguchi T, Kodama N, Yano Y (2023) The relationship between restrictions on going out and motor imagery among medical university students in Japan—research with small samples. J Phys Ther Sci 35(3):243–248
Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17(2):187–245
Kim JS, Kroliczak G, Vesia M (2018) A distributed frontoparietal network in covert visuomotor integration for hand actions. Hum Brain Mapp 39(8):3342–3357. https://doi.org/10.1002/hbm.24173
Kotegawa K, Yasumura A, Iwakura T, Ichikawa H (2020) Prefrontal activation during motor imagery of gait measured by fNIRS. NeuroReport 31(2):142–147. https://doi.org/10.1097/WNR.0000000000001363
Kumawat A, Raza A, Singh NJ, Saini M (2024) Motor imagery modulates distinct networks across age groups: A resting-state fMRI study. Neuropsychologia 192:108243. https://doi.org/10.1016/j.neuropsychologia.2024.108243
Mishra RK, Taly AB, Srivastava A, Kumar S (2022) Effect of concurrent transcranial direct current stimulation on instrumented timed up and go task performance in people with Parkinson’s disease: a double-blind and cross-over study. Clin Neurophysiol 138:74–82. https://doi.org/10.1016/j.clinph.2022.03.006
Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Dan I (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21(1):99–111. https://doi.org/10.1016/j.neuroimage.2003.08.026
Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
Article PubMed CAS Google Scholar
Roberts R, Callow N, Hardy L, Markland D, Bringer J (2008) Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exercise Psychol 30(2):200–221
Scholkmann F, Wolf M (2013) General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt 18(10):105004. https://doi.org/10.1117/1.JBO.18.10.105004
Article PubMed CAS Google Scholar
Sheffield SW, Larson E, Butera IM, DeFreese A, Rogers BP, Wallace MT, Stecker GC, Lee AKC, Gifford RH (2023) Sound level changes the auditory cortical activation detected with functional near-infrared spectroscopy. J Neural Eng 20(1):016004. https://doi.org/10.1007/s10548-023-00981-w
Shiromoto O, Fujiki R, Nishizawa M (2006) Effectiveness of voice therapy in elderly patients with glottal insufficiency. J Voice 20(4):625–629. https://doi.org/10.1016/j.jvoice.2005.09.007
Tachtsidis I, Scholkmann F (2016) False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics 3(3):031405. https://doi.org/10.1117/1.NPh.3.3.031405
Article PubMed PubMed Central Google Scholar
Tian X, Poeppel D (2010) Mental imagery of speech and movement implicates the dynamics of internal forward models. Front Psychol 1:166. https://doi.org/10.3389/fpsyg.2010.00166
Article PubMed PubMed Central Google Scholar
Toriyama H, Ushiba J, Ushiba H (2018) Motor imagery vividness can be assessed by the similarity in EEG frequency components. Front Hum Neurosci 12:243. https://doi.org/10.3389/fnhum.2018.00243
Van Uem JMT, Walgaard S, Ainsworth E, Hasmann SE, Heger T, Nussbaum S, Hobert MA, Micó-Amigo EM, Van Lummel RC, Berg D, Maetzler W (2016) Quantitative Timed-Up-and-Go parameters in relation to cognitive parameters and health-related quality of life in mild-to-moderate Parkinson’s disease. PLoS ONE 11(4):e0151997. https://doi.org/10.1371/journal.pone.0151997
Article PubMed PubMed Central CAS Google Scholar
Vry M-S, Saur D, Rijntjes M, Umarova R, Kellmeyer P, Schnell S, Weiller C (2012) Ventral and dorsal fiber systems for imagined and executed movement. Experim Brain Res 219(2):203–216. https://doi.org/10.1007/s00221-012-3079-7
Comments (0)