Effects of L-carnitine on aging-related learning changes and glutamate-mediated molecular mechanisms

Abd Elkader H-TAE, Hussein MM, Mohammed NA, Abdou HM (2024) The protective role of l-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by Thiamethoxam in the brains of male rats. Naunyn Schmiedebergs Arch Pharmacol 397(6):4365–4379. https://doi.org/10.1007/s00210-023-02887-7

Article  PubMed  CAS  Google Scholar 

Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41(5):313–318. https://doi.org/10.1016/s0197-0186(02)00018-9

Article  PubMed  CAS  Google Scholar 

Ando S, Tadenuma T, Tanaka Y, Fukui F, Kobayashi S, Ohashi Y, Kawabata T (2001) Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. J Neurosci Res 66(2):266–271. https://doi.org/10.1002/jnr.1220

Article  PubMed  CAS  Google Scholar 

Aoyama K, Matsumura N, Watabe M, Nakaki T (2008) Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 27(1):20–30. https://doi.org/10.1111/j.1460-9568.2007.05979.x

Article  PubMed  Google Scholar 

Aziz RLA, Abdel-Wahab A, El-Ela FIA, Hassan NE-HY, El-Nahass E-S, Ibrahim MA, Khalil A-TA (2018) Dose-dependent ameliorative effects of Quercetin and l-Carnitine against atrazine-induced reproductive toxicity in adult male albino rats. Biomed Pharmacother 102:855–864. htts://

Article  PubMed  Google Scholar 

Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495. https://doi.org/10.1016/j.cell.2005.02.001

Article  PubMed  CAS  Google Scholar 

Barbour B, Keller BU, Llano I, Marty A (1994) Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar purkinje cells. Neuron 12(6):1331–1343. https://doi.org/10.1016/0896-6273(94)90448-0

Article  PubMed  CAS  Google Scholar 

Barth A, Vogt AG, Reis D, Pinz AS, Krüger MP, Domingues R, Paroul WB, N (2019) 7-Chloro-4-(phenylselanyl) Quinoline with memory enhancer action in aging rats: modulation of neuroplasticity, acetylcholinesterase activity, and cholesterol levels. Mol Neurobiol 56(9):6398–6408. https://doi.org/10.1007/s12035-019-1530-5

Article  PubMed  CAS  Google Scholar 

Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54(4):2969–2985. https://doi.org/10.1007/s12035-016-9880-8

Article  PubMed  CAS  Google Scholar 

Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9(3):293–298. https://doi.org/10.1016/S0959-4388(99)80043-9

Article  PubMed  CAS  Google Scholar 

Bhatti GK, Reddy AP, Reddy PH, Bhatti JS (2020) Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front Aging Neurosci 11:369. https://doi.org/10.3389/fnagi.2019.00369

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bonjoch NP, Tamayo PR (2001) Protein content quantification by Bradford method. Handbook of plant ecophysiology techniques. Springer, pp 283–295

Boudrault C, Bazinet RP, Ma DW (2009) Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem 20(1):1–10. https://doi.org/10.1016/j.jnutbio.2008.05.016

Article  PubMed  CAS  Google Scholar 

Canas PM, Duarte JM, Rodrigues RJ, Köfalvi A, Cunha RA (2009) Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobio Aging 30(11):1877–1884. https://doi.org/10.1016/j.neurobiolaging.2008.01.003

Article  CAS  Google Scholar 

Castorina M, Ambrosini AM, Giuliani A, Pacifici L, Ramacci MT, Angelucci L (1993) A cluster analysis study of acetyl-L-carnitine effect on NMDA receptors in aging. Exp Gerontol 28(6):537–548. https://doi.org/10.1016/0531-5565(93)90042-c

Article  PubMed  CAS  Google Scholar 

Castorina M, Ambrosini AM, Pacific L, Ramacci MT, Angelucci L (1994) Age-dependent loss of NMDA receptors in hippocampus, striatum, and frontal cortex of the rat: prevention by acetyl-L-carnitine. Neurochem Res 19(7):795–798. https://doi.org/10.1007/bf00967446

Article  PubMed  CAS  Google Scholar 

Clayton DA, Mesches MH, Alvarez E, Bickford PC, Browning MD (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and Spatial learning in the Fischer 344 rat. J Neurosci 22(9):3628–3637. https://doi.org/10.1523/jneurosci.22-09-03628.2002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105. https://doi.org/10.1016/s0301-0082(00)00067-8

Article  PubMed  CAS  Google Scholar 

Derin AT, Kose O, Derin N, Savcioglu F, Hacioglu G, Ozcaglar HU (2008) Auditory brainstem response disturbances in rats induced by sodium metabisulfite ingestion. Mediterr J Otol 4:77–85

Google Scholar 

Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552(2):346–350. https://doi.org/10.1016/0006-8993(91)90103-3

Article  PubMed  CAS  Google Scholar 

Farrand AQ, Gregory RA, Scofield MD, Helke KL, Boger HA (2015) Effects of aging on glutamate neurotransmission in the substantia Nigra of Gdnf heterozygous mice. Neurobiol Aging 36(3):1569–1576. https://doi.org/10.1016/j.neurobiolaging.2014.11.017

Article  PubMed  CAS  Google Scholar 

Felipo V, Miñana MD, Cabedo H, Grisolía S (1994) L-carnitine increases the affinity of glutamate for quisqualate receptors and prevents glutamate neurotoxicity. Neurochem Res 19(3):373–377. https://doi.org/10.1007/bf00971588

Article  PubMed  CAS  Google Scholar 

Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239

Article  PubMed  CAS  Google Scholar 

Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42(1):1–11. https://doi.org/10.1111/j.1471-4159.1984.tb09689.x

Article  PubMed  CAS  Google Scholar 

Förster L, Indra D, Rosenberger K, Zver L, Hofbauer R (2021) L-carnitine exerts a nutrigenomic effect via direct modulation of nuclear receptor signaling in adipocytes, hepatocytes and SKMC, demonstrating its nutritional impact. Nutr Res 85:84–98. https://doi.org/10.1016/j.nutres.2020.11.003

Article  PubMed  CAS  Google Scholar 

Fremeau RT, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Edwards RH (2004) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304(5678):1815–1819. https://doi.org/10.1126/science.1097468Epub 2004 Apr 29

Article  PubMed  CAS  Google Scholar 

Fujimoto K-i, Yoshida M, Ikeguchi K, Niijima K (1989) Impairment of active avoidance produced after destruction of pedunculopontine nucleus areas in the rat. Neurosci Res 6(4):321–328

Article  PubMed  CAS  Google Scholar 

Fukui K, OMOI NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959(1):275–284. https://doi.org/10.1111/j.1749-6632.2002.tb02099.x

Article  PubMed  CAS  Google Scholar 

Ghirardi O, Caprioli A, Milano S, Giuliani A, Ramacci MT, Angelucci L (1992) Active avoidance learning in old rats chronically treated with levocarnitine acetyl. Physiol Behav 52(1):185–187. https://doi.org/10.1016/0031-9384(92)90451-7

Article  PubMed  CAS 

Comments (0)

No login
gif