Scheltens P, Strooper BD, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90. https://doi.org/10.1016/s0140-6736(20)32205-4.
Article CAS PubMed PubMed Central Google Scholar
Boxer AL, Sperling R. Accelerating alzheimer’s therapeutic development: the past and future of clinical trials. Cell. 2023;186(22):4757–72. https://doi.org/10.1016/j.cell.2023.09.023.
Article CAS PubMed PubMed Central Google Scholar
Ferrari C, Sorbi S. The complexity of alzheimer’s disease: an evolving puzzle. Physiol Rev. 2021;101(3):1047–81. https://doi.org/10.1152/physrev.00015.2020.
Article CAS PubMed Google Scholar
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–16. https://doi.org/10.1016/s1474-4422(10)70119-8.
Article CAS PubMed Google Scholar
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609–33. https://doi.org/10.1038/s41573-020-0072-x.
Article CAS PubMed PubMed Central Google Scholar
Batra R, Arnold M, Wörheide MA, Allen M, Wang X, Blach C, et al. The landscape of metabolic brain alterations in alzheimer’s disease. Alzheimers Dement. 2022;19(3):980–98. https://doi.org/10.1002/alz.12714.
Harerimana NV, Paliwali D, Romero-Molina C, Bennett DA, Pa J, Goate A, et al. The role of mitochondrial genome abundance in alzheimer’s disease. Alzheimers Dement. 2022;19(5):2069–83. https://doi.org/10.1002/alz.12812.
Article CAS PubMed Google Scholar
Ashleigh T, Swerdlow RH, Beal MF. The role of mitochondrial dysfunction in alzheimer’s disease pathogenesis. Alzheimers Dement. 2022;19(1):333–42. https://doi.org/10.1002/alz.12683.
Article CAS PubMed Google Scholar
Stocker H, Gentiluomo M, Trares K, Beyer L, Stevenson-Hoare J, Rujescu D, et al. Mitochondrial DNA abundance in blood is associated with alzheimer’s disease- and dementia-risk. Mol Psychiatry. 2024. https://doi.org/10.1038/s41380-024-02670-x.
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, et al. Biomarker-based staging of alzheimer disease: rationale and clinical applications. Nat Rev Neurol. 2024;20(4):232–44. https://doi.org/10.1038/s41582-024-00942-2.
Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34. https://doi.org/10.1016/S1474-4422(22)00168-5.
Article CAS PubMed Google Scholar
Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019;99(1):949–1045. https://doi.org/10.1152/physrev.00062.2017.
Article CAS PubMed Google Scholar
Demetrius LA, Eckert A, Grimm A. Sex differences in alzheimer’s disease: metabolic reprogramming and therapeutic intervention. Trends Endocrinol Metab. 2021;32(12):963–doi979. https://doi.org/10.1016/j.tem.2021.09.004.
Article CAS PubMed Google Scholar
Jimenez-Blasco D, Agulla J, Lapresa R, Garcia-Macia M, Bobo-Jimenez V, Garcia-Rodriguez D, et al. Weak neuronal Glycolysis sustains cognition and organismal fitness. Nat Metab. 2024;6(7):1253–67. https://doi.org/10.1038/s42255-024-01049-0.
Article CAS PubMed PubMed Central Google Scholar
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial dynamics and Cristae shape changes during metabolic reprogramming. Antioxid Redox Signal. 2023;39(10–12):684–707. https://doi.org/10.1089/ars.2023.0268.
Article CAS PubMed Google Scholar
Tábara LC, Burr SP, Frison M, Chowdhury SR, Paupe V, Nie Y, et al. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain MtDNA levels. Cell. 2024;187(14):3619–e36373627. https://doi.org/10.1016/j.cell.2024.05.017.
Article CAS PubMed Google Scholar
Zhang Y, Liu X, Wiggins KL, Kurniansyah N, Guo X, Rodrigue AL, et al. Association of mitochondrial DNA copy number with brain MRI markers and cognitive function: A Meta-analysis of Community-Based cohorts. Neurology. 2023;100(18). https://doi.org/10.1212/wnl.0000000000207157.
Klein H-U, Trumpff C, Yang H-S, Lee AJ, Picard M, Bennett DA, et al. Characterization of mitochondrial DNA quantity and quality in the human aged and alzheimer’s disease brain. Mol Psychiatry. 2021;16(1). https://doi.org/10.1186/s13024-021-00495-8.
Horgusluoglu E, Neff R, Song WM, Wang M, Wang Q, Arnold M, et al. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of alzheimer’s disease. Alzheimers Dement. 2021;18(6):1260–78. https://doi.org/10.1002/alz.12468.
Article CAS PubMed Google Scholar
Xiao Y-L, Gong Y, Qi Y-J, Shao Z-M, Jiang Y-Z. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther. 2024;9(1). https://doi.org/10.1038/s41392-024-01771-x.
Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, et al. A neuron–glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci. 2024;27(4):666–78. https://doi.org/10.1038/s41593-023-01568-1.
Article CAS PubMed PubMed Central Google Scholar
Liu S, Zhong H, Zhu J, Wu L. Identification of blood metabolites associated with risk of alzheimer’s disease by integrating genomics and metabolomics data. Mol Psychiatry. 2024;29(4):1153–62. https://doi.org/10.1038/s41380-023-02400-9.
Article PubMed PubMed Central Google Scholar
van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, et al. Circulating metabolites and general cognitive ability and dementia: evidence from 11 cohort studies. Alzheimers Dement. 2018;14(6):707–22. https://doi.org/10.1016/j.jalz.2017.11.012.
Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J et al. The MRC IEU OpenGWAS data infrastructure. BioRxiv. 2020.08.10.244293v1. https://doi.org/10.1101/2020.08.10.244293.
Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. Elife. 2022;11. https://doi.org/10.7554/eLife.70382.
Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-wide study for Circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun. 2016;7(1). https://doi.org/10.1038/ncomms11122.
Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50. https://doi.org/10.1038/ng.2982.
Article CAS PubMed PubMed Central Google Scholar
Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8(1). https://doi.org/10.1038/ncomms14357.
Ardissino M, Morley AP, Slob EAW, Schuermans A, Rayes B, Raisi-Estabragh Z, et al. Birth weight influences cardiac structure, function, and disease risk: evidence of a causal association. Eur Heart J. 2024;45(6):443–54. https://doi.org/10.1093/eurheartj/ehad631.
Slatkin M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85. https://doi.org/10.1038/nrg2361.
Article CAS PubMed PubMed Central Google Scholar
Bull CJ, Bell JA, Murphy N, Sanderson E, Davey Smith G, Timpson NJ, et al. Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Med. 2020;18(1). https://doi.org/10.1186/s12916-020-01855-9.
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3. https://doi.org/10.1093/bioinformatics/btz469.
Article CAS PubMed PubMed Central Google Scholar
Lin S-H, Brown DW, Machiela MJ. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 2020;80(16):3443–6. https://doi.org/10.1158/0008-5472.Can-20-0985.
Comments (0)