Intranasal delivery route for neurodegenerative diseases: recent insights and future directions

Feustel AC, MacPherson A, Fergusson DA, Kieburtz K, Kimmelman J. Risks and benefits of unapproved disease-modifying treatments for neurodegenerative disease. Neurology. 2020;94:e1–14. https://doi.org/10.1212/WNL.0000000000008699.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Ciccotosto GD, Cappai R, Tang S, Li D, Xie S, Xiao X, Velkov T. Curcumin attenuates Colistin-Induced neurotoxicity in N2a cells via Anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Mol Neurobiol. 2018;55:421–4. https://doi.org/10.1007/s12035-016-0276-6.

Article  CAS  PubMed  Google Scholar 

Dong Y, Yong VW. Aging microglia: old friends greet new enemies. Aging. 2022;14:7190–2. https://doi.org/10.18632/aging.204317

PubMed  PubMed Central  Google Scholar 

Hu CL, Nydes M, Shanley KL, Morales Pantoja IE, Howard TA, Bizzozero OA. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem. 2019;148:426–39. https://doi.org/10.1111/jnc.14604.

Article  CAS  PubMed  Google Scholar 

Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in parkinson’s disease. Int Mmunopharmacol. 2019;67:458–64. https://doi.org/10.1016/j.intimp.2018.12.019.

Article  CAS  Google Scholar 

McKenzie BA, Fernandes JP, Doan MAL, Schmitt LM, Branton WG, Power C. Activation of the executioner caspases-3 and– 7 promotes microglial pyroptosis in models of multiple sclerosis. J Neuroinflammation. 2020;17:253. https://doi.org/10.1186/s12974-020-01902-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M, Shankara S, Guo L, Li C, Pontarelli F, Jensen EH, Comer AL, Kumar D, Zhang M, Gans J, Zhang B, Proto JD, Saleh J, Dodge JC, Savova V, Rajpal D, Ofengeim D, Hammond TR. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci. 2023;26:12–26. https://doi.org/10.1038/s41593-022-01221-3.

Article  CAS  PubMed  Google Scholar 

Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA. Mitophagy inhibits amyloid-β and Tau pathology and reverses cognitive deficits in models of alzheimer’s disease. Nat Neurosci. 2019;22:401–12. https://doi.org/10.1038/s41593-018-0332-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beckers J, Tharkeshwar AK, Van Damme. P.C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy. 2021;17:3306–22.

CAS  PubMed  PubMed Central  Google Scholar 

Bernardini JP, Brouwer JM, Tan IK, Sandow JJ, Huang S, Stafford CA, Bankovacki A, Riffkin CD, Wardak AZ, Czabotar PE, Lazarou M, Dewson G. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J. 2019;38:e99916. https://doi.org/10.15252/embj.201899916.

Article  CAS  PubMed  Google Scholar 

Sethi A, Horne CR, Fitzgibbon C, Wilde K, Davies KA, Garnish SE, Jacobsen AV, Samson AL, Hildebrand JM, Wardak A, Czabotar PE, Petrie EJ, Gooley PR, Murphy JM. Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector. MLKL Cell Death Differ. 2022;29:1804–15. https://doi.org/10.1038/s41418-022-00965-6.

Article  CAS  PubMed  Google Scholar 

Wang T, Perera ND, Chiam MDF, Cuic B, Wanniarachchillage N, Tomas D, Samson AL, Cawthorne W, Valor EN, Murphy JM, Turner BJ. Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death Differ. 2020;27:1728–39. https://doi.org/10.1038/s41418-019-0457-8.

Article  CAS  PubMed  Google Scholar 

Doll S, Freitas FP, Shahm R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8. https://doi.org/10.1038/s41586-019-1707-0.

Article  CAS  PubMed  Google Scholar 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92. https://doi.org/10.1038/s41586-019-1705-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA, Bryce-Smith S, Gatt A, Hallegger M, Fagegaltier D, Phatnani H, NYGC, ALS Consortium, Newcombe J, Gustavsson EK, Seddighi S, Reyes JF, Coon SL, Ramos D, Schiavo G, Fisher EMC, Raj T, Secrier M, Lashley T, Ule J, Buratti E, Humphrey J, Ward ME, Fratta P. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603:131–7. https://doi.org/10.1038/s41586-022-04436-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elorza A, Márquez Y, Cabrera JR, Sánchez-Trincado JL, Santos-Galindo M, Hernández I-H-, Díaz-Hernández PicóS, García-Escudero JI, Irimia R, Lucas M. Huntington’s disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain. 2021;144:2009–23. https://doi.org/10.1093/brain/awab087.

Article  PubMed  PubMed Central  Google Scholar 

Lin L, Zhang M, Stoilov P, Chen L, Zheng S. Developmental Attenuation of neuronal apoptosis by Neural-Specific splicing of Bak1 microexon. Neuron. 2020;107:1180–e968. https://doi.org/10.1016/j.neuron.2020.06.036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourdenx M, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy. 2021;17:2040–2. https://doi.org/10.1080/15548627.2021.1935007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung C, Tuck E, Stubbs V, van der Lee SJ, Aalfs C, van Spaendonk R, Scheltens P, Hardy J, Holstege H, Livesey FJ. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 2021;35:109259. https://doi.org/10.1016/j.celrep.2021.109259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, Presa M, Gonzalo-Gil E, Maimon R, Vazquez-Sanchez S, Chaturvedi S, Bravo-Hernández M, Taupin V, Moore S, Artates JW, Acks E, Ndayambaje IS, Agra de Almeida Quadros AR, Jafar-Nejad P, Rigo F, Bennett CF, Lutz C, Lagier-Tourenne C, Cleveland DW. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379:1140–9. https://doi.org/10.1126/science.abq5622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rise SJ, Boalnd SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting neuroinflammation by Pharmacologic dowregualtion of inflammatory pathways is neuroprotective in protein misfolding disorders. ACS Chem Neurosci. 2024;15:1533–47. https://doi.org/10.1021/acschemneuro.3c00846.

Article  CAS  Google Scholar 

Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci. 2022;14:1006089. https://doi.org/10.3389/fnagi.2022.1006089.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14. https://doi.org/10.1602/neurorx.2.1.3.

Article  PubMed  PubMed Central  Google Scholar 

Okuyama T, Eto Y, Sakai N, Nakamura KT, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Sato YA. Phase 2/3 trial of pabinafusp alfa, IDS fused with Anti-Human transferrin receptor antibody, targeting neurodegeneration in MPS-II. Mol Ther. 2021;29:671–9. https://doi.org/10.1016/j.ymthe.2020.09.039.

Article  CAS  PubMed  Google Scholar 

Ou W, Yang J, Simanauskaite J, Choi M, Castellanos DM, Chang R, Sun J, Jagadeesan N, Parfitt KD, Cribbs DH, Sumbria RK. Biologic TNF-alpha inhibitors reduce microgliosis, neuronal loss, and Tau phosphorylation in a Transgenic mouse model of Tauopathy. J Neuroinflammation. 2021;18:312. https://doi.org/10.1186/s12974-021-02332-7.

Comments (0)

No login
gif