Development of simplified poly(β-aminoester)-zwitterion nanovehicles for controlled cancer cell transfection and enhanced gene delivery across a cell-based model of the blood-brain barrier

Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol. 2024;21(6):407–27. https://doi.org/10.1038/s41571-024-00883-1.

Article  CAS  PubMed  Google Scholar 

Wang C, Pan C, Yong H, et al. Emerging non-viral vectors for gene delivery. J Nanobiotechnol. 2023;21(1):272. https://doi.org/10.1186/s12951-023-02044-5.

Article  CAS  Google Scholar 

Magaña Rodriguez JR, Guerra-Rebollo M, Borrós S, Fornaguera C. Nucleic acid-loaded poly(beta-aminoester) nanoparticles for cancer nano-immuno therapeutics: the good, the bad, and the future. Drug Deliv Transl Res. 2024;14(14):3477–93. https://doi.org/10.1007/s13346-024-01585-y.

Article  PubMed  PubMed Central  Google Scholar 

Lynn DM, Langer R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc. 2000;122(44):10761–8. https://doi.org/10.1021/ja0015388.

Article  CAS  Google Scholar 

Sunshine JC, Akanda MI, Li D, Kozielski KL, Green JJ. Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules. 2011;12(10):3592–600. https://doi.org/10.1021/bm200807s.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dosta P, Segovia N, Cascante A, Ramos V, Borrós S. Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified poly(beta-amino ester)s (PBAEs). Acta Biomater. 2015;20:82–93. https://doi.org/10.1016/j.actbio.2015.03.029.

Article  CAS  PubMed  Google Scholar 

Segovia N, Dosta P, Cascante A, Ramos V, Borrós S. Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater. 2014;10(5):2147–58. https://doi.org/10.1016/j.actbio.2013.12.054.

Article  CAS  PubMed  Google Scholar 

Dosta P, Demos C, Ramos V, et al. Delivery of SiRNA to endothelial cells in vivo using lysine/histidine Oligopeptide-Modified Poly(β-amino ester) nanoparticles. Cardiovasc Eng Technol. 2021;12(1):114–25. https://doi.org/10.1007/s13239-021-00518-x.

Article  PubMed  PubMed Central  Google Scholar 

Fornaguera C, Guerra-Rebollo M, Ángel Lázaro M, et al. mRNA delivery system for targeting Antigen-Presenting cells in vivo. Adv Healthc Mater. 2018;7(17):e1800335. https://doi.org/10.1002/adhm.201800335.

Article  CAS  PubMed  Google Scholar 

Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A. Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles. Int J Nanomed. 2021;16:5981–6002. https://doi.org/10.2147/IJN.S321329.

Article  Google Scholar 

Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv. 2020;17:1395–410. https://doi.org/10.1080/17425247.2020.1796628.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris TJ, Green JJ, Fung PW, Langer R, Anderson DG, Bhatia SN. Tissue-specific gene delivery via nanoparticle coating. Biomaterials. 2010;31(5):998–1006. https://doi.org/10.1016/j.biomaterials.2009.10.012.

Article  CAS  PubMed  Google Scholar 

Mirón-Barroso S, Domènech EB, Trigueros S. Nanotechnology-based strategies to overcome current barriers in gene delivery. Int J Mol Sci. 2021;22(16):8537. https://doi.org/10.3390/ijms22168537.

Article  PubMed  PubMed Central  Google Scholar 

Kaczmarek JC, Kauffman KJ, Fenton OS, et al. Optimization of a degradable Polymer-Lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett. 2018;18(10):6449–54. https://doi.org/10.1021/acs.nanolett.8b02917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanjoh M, Miyata K, Christie RJ, et al. Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA. Biomacromolecules. 2012;13(11):3641–9. https://doi.org/10.1021/bm301095a.

Article  CAS  PubMed  Google Scholar 

Kim J, Mondal SK, Tzeng SY, et al. Poly(ethylene glycol)-Poly(beta-amino ester)-Based nanoparticles for suicide gene therapy enhance brain penetration and extend survival in a preclinical human glioblastoma orthotopic xenograft model. ACS Biomater Sci Eng. 2020;6(5):2943–55. https://doi.org/10.1021/acsbiomaterials.0c00116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen BM, Cheng TL, Roffler SR. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of Anti-Polyethylene glycol antibodies. ACS Nano. 2021;15(9):14022–48. https://doi.org/10.1021/acsnano.1c05922.

Article  CAS  PubMed  Google Scholar 

Moayedi S, Xia W, Lundergan L, Yuan H, Xu J. Zwitterionic polymers for biomedical applications: antimicrobial and antifouling strategies toward implantable medical devices and drug delivery. Langmuir. 2024;40(44):23125–45. https://doi.org/10.1021/acs.langmuir.4c02664.

Article  CAS  PubMed  Google Scholar 

García-Fernández C, Virgilio T, Latino I, et al. Stealth mRNA nanovaccines to control lymph node trafficking. J Controlled Release. 2024;374:325–36. https://doi.org/10.1016/j.jconrel.2024.08.018.

Article  CAS  Google Scholar 

Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic peptides: from mechanism, design strategies to applications. ACS Appl Mater Interfaces. 2024;16(42):56497–518. https://doi.org/10.1021/acsami.4c08891.

Article  CAS  PubMed  Google Scholar 

Lucana MC, Lucchi R, Gosselet F, Díaz-Perlas C, Oller-Salvia B. BrainBike peptidomimetic enables efficient transport of proteins across brain endothelium. RSC Chem Biol. 2023;5(1):7–11. https://doi.org/10.1039/d3cb00194f.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Navalón-López M, Dols-Perez A, Grijalvo S, Fornaguera C, Borrós S. Unravelling the role of individual components in pBAE/polynucleotide polyplexes in the synthesis of tailored carriers for specific applications: on the road to rational formulations. Nanoscale Adv. 2023;5(6):1611–23. https://doi.org/10.1039/d2na00800a.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69. https://doi.org/10.1042/bj20031253.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47. https://doi.org/10.1016/S0169-409X(02)00228-4.

Article  CAS  PubMed  Google Scholar 

Bagheri-Josheghani S, Bakhshi B, Najar-Peerayeh S. The influence of nanoparticle on vaccine responses against bacterial infection. J Nanotechnol. 2022;2022(1):1–15. https://doi.org/10.1155/2022/6856982.

Article  CAS  Google Scholar 

Ye H, Wang L, Huang R, et al. Superior antifouling performance of a zwitterionic peptide compared to an amphiphilic, Non-Ionic peptide. ACS Appl Mater Interfaces. 2015;7(40):22448–57. https://doi.org/10.1021/acsami.5b06500.

Article  CAS  PubMed  Google Scholar 

Li Q, Wen C, Yang J, et al. Zwitterionic biomaterials. Chem Rev. 2022;122(23):17073–154. https://doi.org/10.1021/acs.chemrev.2c00344.

Article  CAS  PubMed  Google Scholar 

Yuan Z, Li B, Niu L, et al. Zwitterionic peptide cloak mimics protein surfaces for protein protection. Angewandte Chemie - Int Ed. 2020;59(50):22378–81. https://doi.org/10.1002/anie.202004995.

Comments (0)

No login
gif