Song J, Geng Z, Luan X, Zhang D, Wang Q, Pan L, et al. Construction of natural hydrogels consisting of oxidized dextran, quaternized chitosan and cuttlefish ink nanoparticles for treating diabetic oral ulcers. Int J Biol Macromol [Internet]. 2024 [cited 2025 Apr 5];283:137737. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39551299
Cheng H, Tian G, Liu H, Bai D, Zhang Y, Wang Q, et al. A molybdenum sulfide based nitric oxide controlled release oral gel for rapid healing of oral mucosal ulcers. J Colloid Interface Sci [Internet]. 2025 [cited 2025 Apr 3];678:560–71. Available from: https://pubmed.ncbi.nlm.nih.gov/39214008/
Elhabal SF, Faheem AM, Hababeh S, Nelson J, et al. Augmented marshmallow extract lipid nanoparticles with clove oil embedded in collagen sponge for ultimate antimicrobial healing of diabetic mouth ulcer. Pharm. 2025;17:611. [cited 2025 May 7]. Available from: https://www.mdpi.com/1999-4923/17/5/611/htm
Fang X, Chen X, Dong W, Ye F. A poly(tannic acid) particle-supported β-glucan/chitosan hydrogel for managing oral ulcers in diabetes. Int J Biol Macromol. 2025;306: 141609.
Zheng Y, Zhuang Z, Zhou R, Zheng L, Li C, Zhou R, et al. Next-Generation Oral Ulcer Management: Integrating Cold Atmospheric Plasma (CAP) with Nanogel-Based Pharmaceuticals for Inflammation Regulation. Adv Healthc Mater [Internet]. 2025 [cited 2025 Apr 3];14. Available from: https://pubmed.ncbi.nlm.nih.gov/39901375/
Li W, Chen Y, Li K, Chen Z, Zhang J, Zhao G, et al. Periplaneta americana extract improves recurrent oral ulcers through regulation of TLR4/NF-κB and Nrf2/HO-1 pathways. Scientific Reports 2025 15:1 [Internet]. 2025 [cited 2025 Mar 31];15:1–17. Available from: https://www.nature.com/articles/s41598-024-84703-7
Sanguansajapong V, Sakdiset P, Puttarak P. Development of Oral Microemulsion Spray Containing Pentacyclic Triterpenes-Rich Centella asiatica (L.) Urb. Extract for Healing Mouth Ulcers. Pharmaceutics [Internet]. 2022 [cited 2025 Apr 3];14. Available from: https://pubmed.ncbi.nlm.nih.gov/36432724/
Salcan I, Dilber M, Suleyman Z, Yucel N, Salcan S, Kesan S, et al. Protective effect of adenosine triphosphate against cisplatin-induced necrotic and degenerative oral mucositis in rats. J Appl Oral Sci [Internet]. 2025 [cited 2025 Apr 3];33. Available from: https://pubmed.ncbi.nlm.nih.gov/40136224/
Mohan MP, Epstein JB, Meleveedu KS, Padhi P, Pili R, Satheeshkumar PS. Hospitalized Cancer Patients with Opioid Management for Chemo-Induced Ulcerative Mucositis Lessens the Patients’ Overall Burden of Illness. Pharmaceuticals (Basel) [Internet]. 2025 [cited 2025 Apr 28];18:536. Available from: https://pubmed.ncbi.nlm.nih.gov/40283971/
Strobl J, Ballicas N, Wachter B, Revertera M, Knaus H, Wohlfarth P, et al. Dental health, conditioning and oral mucositis in allogeneic hematopoietic stem cell transplantation: a single-center study. Cytotherapy [Internet]. 2025 [cited 2025 Apr 28]; Available from: https://pubmed.ncbi.nlm.nih.gov/40266157/
Ramadon D, Sutrisna LFP, Harahap Y, Putri KSS, Ulayya F, Hartrianti P, et al. Enhancing Intradermal Delivery of Lidocaine by Dissolving Microneedles: Comparison between Hyaluronic Acid and Poly(Vinyl Pyrrolidone) Backbone Polymers. Pharmaceutics [Internet]. 2023 [cited 2025 Apr 28];15. Available from: https://pubmed.ncbi.nlm.nih.gov/36678916/
Roche SM, Ralston BJ, Olson B, Sharpe BD, Schatz C, Beaugrand K, et al. Efficacy of a Lidocaine-Impregnated Elastrator Band for Castration and Tail Docking in Lambs. Animals (Basel) [Internet]. 2024 [cited 2025 Apr 28];14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/38791621
Ross JA, Roche SM, Beaugrand K, Schatz C, Hammad A, Ralston BJ, et al. Assessment of the Pharmacokinetics and Pharmacodynamics of Injectable Lidocaine and a Lidocaine-Impregnated Latex Band for Castration and Tail Docking in Lambs. Animals (Basel) [Internet]. 2024 [cited 2025 Apr 28];14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/38254425
Ross JA, Roche SM, Beaugrand K, Schatz C, Hammad A, Ralston BJ, et al. Assessment of the Effective Tissue Concentrations of Injectable Lidocaine and a Lidocaine-Impregnated Latex Band for Castration in Calves. Animals [Internet]. 2024 [cited 2025 Apr 28];14. Available from: https://pubmed.ncbi.nlm.nih.gov/38540075/
Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohns Colitis. 2014;8:903–18.
Kumar D, Sil D, Kurmi B Das, Kumar M. Future Prospects and Regulatory Pathways for Invasome Technologies in Transdermal Drug Delivery. Assay Drug Dev Technol [Internet]. 2025 [cited 2025 Apr 28];23:115–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39772638
Cunha IVN, Farias IV, Argenta DF, Gerola AP, Campos AM, Caon T. Development of apigenin-loaded invasomes with anti-melanoma potential. Colloids Surf B Biointerfaces [Internet]. 2025 [cited 2025 Apr 28];250. Available from: https://pubmed.ncbi.nlm.nih.gov/39923381/
Kumar B, Sahoo PK. Augmented Transdermal Delivery of Curcumin for the Effective Management of Plaque Psoriasis – Design, Formulation, Characterisation, and In Vivo Studies. AAPS PharmSciTech [Internet]. 2023 [cited 2025 Apr 28];24. Available from: https://pubmed.ncbi.nlm.nih.gov/37291356/
Qadri GR, Ahad A, Aqil M, Imam SS, Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif Cells Nanomed Biotechnol [Internet]. 2017 [cited 2025 Apr 28];45:139–45. Available from: https://pubmed.ncbi.nlm.nih.gov/26829018/
Shankar R, Upadhyay PK, Kumar M. Invasomes for enhanced delivery through the skin: evaluation of systems to meet with clinical challenges. Pharm Nanotechnol. 2021;9:317–25.
Elhabal SF, Al-Zuhairy SA-KS, Elrefai MFM, El-Nabarawi MA, Hababeh S, Zarif Attalla K, et al. Chitosan-based intelligent microneedles for delivery of amphotericin B loaded oleosomes: antifungal ocular patch targeting for effective against fungal keratitis using rabbit model via TLR4/NLRP3 pathway. Int J Nanomedicine. 2025;20:5949–81. [cited 2025 May 11]. Available from: https://www.dovepress.com/chitosan-based-intelligent-microneedles-for-delivery-of-amphotericin-b-peer-reviewed-fulltext-article-IJN
Nagra U, Barkat K, Ashraf MU, Shabbir M. Feasibility of Enhancing Skin Permeability of Acyclovir through Sterile Topical Lyophilized Wafer on Self-Dissolving Microneedle-Treated Skin. Dose Response [Internet]. 2022 [cited 2025 Apr 24];20:15593258221097594. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35602585
Elhabal SF, El-Nabarawi M, Elrefai MFM, Teaima MH, Shoela MS, Khamis GM, et al. Nano-spanlastics-loaded dissolving microneedle patches for ketotifen fumarate: advanced strategies for allergic conjunctivitis treatment and molecular insights. Drug Deliv Transl Res [Internet]. 2025 [cited 2025 Feb 25];1–24. Available from: https://link.springer.com/article/https://doi.org/10.1007/s13346-025-01796-x
Shabbir M, Barkat K, Ashraf MU, Nagra U. Development of a Novel Self-Dissolving Microneedle-Assisted Percutaneous Delivery System of Diacerein through Solid Dispersion Gel: Solubility Enhancement, Proof of Anti-inflammatory Activity and Safety. Curr Drug Deliv. 2022;20:1351–67.
Anjani QK, Pandya AK, Demartis S, Domínguez-Robles J, Moreno-Castellanos N, Li H, et al. Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int J Pharm. 2023. https://doi.org/10.1016/j.ijpharm.2023.123446.
Article PubMed PubMed Central Google Scholar
Al-Zuhairy SAKS, Elhabal SF, Mohamed Elrefai MF, Hababeh S, Nelson J, Fady M, et al. Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments. Pharmaceuticals [Internet]. 2025 [cited 2025 Apr 3];18:381. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11944605/
Pereira AAR, Aparecida JVM, Ramalho ME, Ferreira LMB, Gremião MPD. Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate. Pharmaceutics [Internet]. 2024 [cited 2025 Mar 15];16:1489. Available from: https://www.mdpi.com/1999-4923/16/12/1489/htm
Qi H, Yang L, Ma R, Xiang Y, Dai Y, Ren J, et al. Amoxicillin-laded sodium alginate/cellulose nanocrystals/polyvinyl alcohol composite nanonetwork sponges with enhanced wound healing and antibacterial performance. Int J Biol Macromol [Internet]. 2024 [cited 2025 Apr 3];280. Available from: https://pubmed.ncbi.nlm.nih.gov/39288864/
Lozano-Navarro JI, Díaz-Zavala NP, Velasco-Santos C, Melo-Banda JA, Páramo-García U, Paraguay-Delgado F, et al. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties. Materials (Basel) [Internet]. 2018 [cited 2024 Mar 16];11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29329275
Elhabal SF, Al-Zuhairy SA, El-Nabarawi MA, Mohamed Elrefai MF, Shoela MS, Hababeh S, et al. Enhancing Photothermal Therapy for Antibiofilm Wound Healing: Insights from Graphene Oxide-Cranberry Nanosheet Loaded Hydrogel in vitro, in silico, and in vivo Evaluation. Int J Nanomedicine. 2024;19.
Ewedah TM, Abdalla AM, Hagag RS, Elhabal SF, Teaima MHM, El-Nabarawi MA, et al. Enhancing cellular affinity for skin disorders: Electrospun polyurethane/collagen nanofiber mats coated with phytoceramides. Int J Pharm. 2024. https://doi.org/10.1016/j.ijpharm.2024.124541.
Tognolini AR, Roberts JA, Pandey S, Wallis SC, Eley VA. Propofol does not alter the protein binding and unbound concentration of lidocaine at clinically targeted plasma concentrations in vitro – A short communication. Anaesth Crit Care Pain Med [Internet]. 2024 [cited 2025 Apr 28];43:101419. Available from: https://pubmed.ncbi.nlm.nih.gov/39089457/
Ashour ES, El-Sayed GM, Hegazy MA, Ghoniem NS. Chemometric-assisted UV spectrophotometric methods for determination of miconazole nitrate and lidocaine hydrochloride along with potential impurity and dosage from preservatives. BMC Chem [Internet]. 2025 [cited 2025 Apr 28];19. Available from: https://pubmed.ncbi.nlm.nih.gov/40156035/
Babaie S, Del Bakhshayesh AR, Ha JW, Hamishehkar H, Kim KH. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials [Internet]. 2020 [cited 2025 Apr 28];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32079276/
El-Nawawy TM, Adel YA, Teaima MHM, Nassar NN, Nemr AA, Al-Samadi I, et al. Intranasal bilosomes in thermosensitive hydrogel: advancing desvenlafaxine succinate delivery for depression management. Pharm Dev Technol. 2024. https://doi.org/10.1080/10837450.2024.2376067.
Zarif Attalla K, Hassan DH, Teaima MH, Yousry C, El-Nabarawi MA, Said MA, et al. Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management. Pharmaceuticals [Internet]. 2025 [cited 2025 Apr 3];18:421. Available from: https://www.mdpi.com/1424-8247/18/3/421/htm
Elhabal SF, Ashour HA, Mohamed Elrefai MF, Teaima MH, Elzohairy NA, Kholeif NA, et al. Innovative transdermal delivery of microneedle patch for dual drugs febuxostat and lornoxicam: in vitro and in vivo efficacy for treating gouty arthritis. J Drug Deliv Sci Technol. 2025;110:107053. [cited 2025 Jun 3]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1773224725004563
Elhabal SF, Faheem AM, Hababeh S, Nelson J, Elzohairy NA, AbdelGhany Morsy SA, et al. Dissolving microneedles containing lactoferrin nanosuspension for enhancement of antimicrobial and anti-inflammatory effects in the treatment of dry eye disease. Pharm. 2025;17:653. [cited 2025 Jun 3]. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12114833/
Kral Ö, Ilbasmis-Tamer S, Han S, Tirnaksiz F. Development of dermal lidocaine nanosuspension formulation by the wet milling method using experimental design: in vitro/in vivo evaluation. ACS Omega. 2024;9:50992–1008. [cited 2025 Apr 12]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/39758633
Elhabal SF, Abdelmonem RAAB, El Nashar RM, Mohamed Elrefai MF, Hamdan AM, Safwat NA, et al. Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris. Pharmaceutics. 2024;16.
Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res [Internet]. 2017 [cited 2024 Mar 25];68:1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/28778472/
Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172:1126–41.
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, et al. Dissolving microneedles: a transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm. 2025;671:125206.
Chanabodeechalermrung B, Chaiwarit T, Chaichit S, Udomsom S, Baipaywad P, Worajittiphon P, et al. HPMC/PVP K90 Dissolving Microneedles Fabricated from 3D-Printed Master Molds: Impact on Microneedle Morphology, Mechanical Strength, and Topical Dissolving Property. Polymers (Basel) [Internet]. 2024 [cited 2025 Apr 24];16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/38399830
Asaf MB, Khairiyah, Kurniawan I, Achmad NA, Tuna RW, Himawan A, et al. Amphotericin B nanocrystals integrated with bilayer dissolving microneedles: a new strategy for transmucosal delivery of amphotericin B to improve the effectiveness of oral candidiasis therapy. J Pharm Investig [Internet]. 2025 [cited 2025 Apr 17];1–19. Available from: https://link.springer.com/article/https://doi.org/10.1007/s40005-025-00726-w
Li Q, Yu X, Zheng X, Yang J, Hui J, Fan D. Rapid dissolution microneedle based on polyvinyl alcohol/chitosan for local oral anesthesia. Int J Biol Macromol. 2024. https://doi.org/10.1016/j.ijbiomac.2023.128629.
Choi HJ, Song JM, Bondy BJ, Compans RW, Kang SM, Prausnitz MR. Effect of osmotic pressure on the stability of whole inactivated influenza vaccine for coating on microneedles. PLoS One [Internet]. 2015 [cited 2025 Apr 28];10. Available from: https://pubmed.ncbi.nlm.nih.gov/26230936/
Zhang M, Liu T, Tan D, Liu J, Gao Y, Wang H, et al. Preparation, characterization, and ex vivo evaluation of isoxanthohumol nanosuspension. Int J Pharm [Internet]. 2024 [cited 2025 Apr 12];667. Available from: https://pubmed.ncbi.nlm.nih.gov/39522839/
Sabbagh F, Kim BS. Ex vivo transdermal delivery of nicotinamide mononucleotide using polyvinyl alcohol microneedles. Polymers. 2023. https://doi.org/10.3390/polym15092031.
Article PubMed PubMed Central Google Scholar
ELhabal SF, El-Nabarawi MA, Hassanin SO, Hassan FE, Abbas SS, Gebril SM, et al. Transdermal fluocinolone acetonide loaded decorated hyalurosomes cellulose acetate/polycaprolactone nanofibers mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats. J Pharm Investig [Internet]. 2024 [cited 2024 Oct 20];1–20. Available from: https://link.springer.com/article/https://doi.org/10.1007/s40005-024-00693-8
Mohanty DL, Divya N, Zafar A, Warsi MH, Parida GR, Padhi P, et al. Development of etoricoxib-loaded mesoporous silica nanoparticles laden gel as vehicle for transdermal delivery: optimization, ex vivo permeation, histopathology, and in vivo anti-inflammatory study. Drug Dev Ind Pharm [Internet]. 2025 [cited 2025 Apr 16];1–16. Available from: https://pubmed.ncbi.nlm.nih.gov/40192336/
Saffari M, Shirazi FH, Moghimi HR. Terpene-loaded Liposomes and Isopropyl Myristate as Chemical Permeation Enhancers Toward Liposomal Gene Delivery in Lung Cancer cells; A Comparative Study. Iran J Pharm Res [Internet]. 2016 [cited 2025 May 7];15:261. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5149012/
Cunha IVN, Farias IV, Argenta DF, Gerola AP, Campos AM, Caon T. Development of apigenin-loaded invasomes with anti-melanoma potential. Colloids Surf B Biointerfaces [Internet]. 2025 [cited 2025 May 7];250. Available from: https://pubmed.ncbi.nlm.nih.gov/39923381/
Fouad SA, Malaak FA, Teaima MHM, Omar SM, Kutkat OM, Elhabal SF, et al. Novel inhalable nano-based/microparticles for enhanced sustained pulmonary delivery of remdesivir - a patient malleable treatment for coronaviruses infection: In vitro aerosolization, cytotoxicity assays and antiviral activity studies. J Drug Deliv Sci Technol. 2024. https://doi.org/10.1016/j.jddst.2024.106196.
Paul K, Bhattacharjee P, Chatterjee N, Pal TK. Nanoliposomes of supercritical carbon dioxide extract of small cardamom seeds redresses type 2 diabetes and hypercholesterolemia. Recent Pat Biotechnol [Internet]. 2019 [cited 2025 Apr 28];13:284–303. Available from: https://pubmed.ncbi.nlm.nih.gov/30947681/
Ata T, Al-Ani I, Karameh N, Atta MR, Dayyih WA. Alectinib-Loaded Chitosan-Alginate Nanoparticles: A Novel Synthesis Method with In Vitro and In Vivo Evaluations. Pharmaceutics [Internet]. 2025 [cited 2025 Apr 28];17:492. Available from: https://pubmed.ncbi.nlm.nih.gov/40284487/
Datta D, Roy G, Garg P, Venuganti VVK. Ocular delivery of cyclosporine A using dissolvable microneedle contact lens. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103211.
Jin M, Jeon WJ, Lee H, Jung M, Kim HE, Yoo H, et al. Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Deliv Transl Res. 2022;12:415–25.
Mahfud MAS ban, Fitri AMN, Elim D, Sultan NAF, Saputra MD, Afika N, et al. Combination of synthetic and natural polymers on the characteristics and evaluation of transdermal hydrogel-forming microneedles preparations integrated with direct compressed tablets reservoir sildenafil citrate. J Drug Deliv Sci Technol. 2023;85
Wang Y, Yu H, Wang L, Zhang L, Liu J, Chen D, et al. Intelligent microneedle patch based on functionalized alginate and chitosan for long-term self-regulated insulin delivery. Carbohydr Polym [Internet]. 2025 [cited 2025 Apr 28];348:122885. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0144861724011111
Yang Y, Zhou G, Chen Y, Lin N, Ma J. Poly(lactide acid)-based microneedles enhanced by tunicate cellulose nanocrystals for potential diabetic periodontitis treatment. Carbohydr Polym [Internet]. 2025 [cited 2025 Apr 28];361:123629. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861725004102
Wu G, Jin K, Liu L, Zhang H. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter [Internet]. 2020 [cited 2024 Mar 22];16:3319–24. Available from: https://pubmed.ncbi.nlm.nih.gov/32187247/
Tong J, Liu Z, Zhou K, Wang K, Guo S, Zhang H. Thermosensitive bovine lactoferricin-loaded chitosan hydrogels for sustained antibacterial release: An alternative to antibiotics for treating bovine mastitis. Int J Biol Macromol [Internet]. 2025 [cited 2025 Apr 24];303. Available from: https://pubmed.ncbi.nlm.nih.gov/39909276/
Maulvi FA, Mangukiya MA, Patel PA, Vaidya RJ, Koli AR, Ranch KM, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2016. https://doi.org/10.1007/s10856-016-5724-3.
Raghav SS, Kumar B, Sethiya NK, Pahwa S. Development and optimization of kaempferol loaded ethosomes using Box–Behnken statistical design: In vitro and ex-vivo assessments. J Biomed Mater Res B Appl Biomater [Internet]. 2024 [cited 2025 Apr 28];112. Available from: https://pubmed.ncbi.nlm.nih.gov/38433621/
Zhang Y, Cao P, Qin D, Zhao Y, Chen X, Ma P. Anti-inflammatory, anti-colitis, and antioxidant effects of columbianadin against DSS-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and TLR4-NF-κB signaling pathway. Inflammopharmacology [Internet]. 2025 [cited 2025 Apr 28];33:341–52. Available from:
Comments (0)