Sex differences in structural and receptor mRNA expression in the ventral anterior cingulate cortex and a potential role of perineuronal nets in monogamous pair bond establishment (Peromyscus californicus)

Acosta MC. Neural Mechanisms of Pup-Affiliative Behavior in Adult Virgin California Mice (Peromyscus californicus) (Publication No. 30993951) [Doctoral dissertation, University of California- Riverside]. ProQuest Dissertations & Theses Global. 2024

Alpár A, Gärtner U, Härtig W, Brückner G. Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res. 2006;1120(1):13–22.

Google Scholar 

Apps MA, Rushworth MF, Chang SW. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron. 2016;90(4):692–707.

Google Scholar 

Aragona BJ, Wang Z. The prairie vole (Microtus ochrogaster): an animal model for behavioral neuroendocrine research on pair bonding. ILAR J. 2004. https://doi.org/10.1093/ilar.45.1.35.

Google Scholar 

Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, He MX, Dulac C, Hoekstra HE. The genetic basis of parental care evolution in monogamous mice. Nature. 2017;544(7651):434–9.

Google Scholar 

Balthazart J. Steroid-dependent plasticity in the song control system: perineuronal nets and HVC neurogenesis. Front Neuroendocrinol. 2023;71: 101097.

Google Scholar 

Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, Ressler KJ. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95(1):169–79.

Google Scholar 

Basile BM, Schafroth JL, Karaskiewicz CL, Chang SW, Murray EA. The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. PLoS Biol. 2020;18(6): e3000677.

Google Scholar 

Becker EA, Moore BM, Auger C, Marler CA. Paternal behavior increases testosterone levels in offspring of the California mouse. Horm Behav. 2010;58(3):385–9.

Google Scholar 

Becker EA, Castelli FR, Yohn CN, Spencer L, Marler CA. Species differences in urine scent-marking and counter-marking in Peromyscus. Behav Processes. 2018;146:1–9.

Google Scholar 

Bester-Meredith JK, Young LJ, Marler CA. Species differences in paternal behavior and aggression in Peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav. 1999;36(1):25–38.

Google Scholar 

Bester-Meredith JK, Martin PA, Marler CA. Manipulations of vasopressin alter aggression differently across testing conditions in monogamous and non-monogamous Peromyscus mice. Aggress Behav. 2005;31(2):189–99.

Google Scholar 

Briggs JR, Kalcounis-Rueppell MC. Similar acoustic structure and behavioural context of vocalizations produced by male and female California mice in the wild. Anim Behav. 2011;82(6):1263–73.

Google Scholar 

Bosiacki M, Gąssowska-Dobrowolska M, Kojder K, Fabiańska M, Jeżewski D, Gutowska I, Lubkowska A. Perineuronal nets and their role in synaptic homeostasis. Int J Mol Sci. 2019;20(17):4108.

Google Scholar 

Bosch OJ, Neumann ID. Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci. 2010;31(5):883–91.

Google Scholar 

Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav. 2012;61(3):293–303.

Google Scholar 

Brauer K, Ha W, Bigl V, Bru G. Distribution of parvalbumin-containing neurons and lectin-binding perineuronal nets in the rat basal forebrain. Brain Res. 1993;631(1):167–70.

Google Scholar 

Brauer K, Härtig W, Fritschy JM, Brückner G, Bigl V. Co-occurrence of perineuronal nets with GABAA receptor α1 subunit-immunoreactive neurones in the rat septal region. NeuroReport. 1995;6(5):733–6.

Google Scholar 

Brückner G, Brauer K, Härtig W, Wolff JR, Rickmann MJ, Derouiche A, Bertrand D, Girard N, Oertel WH, Reichenbach A. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia. 1993;8(3):183–200.

Google Scholar 

Bruckner G, Bringmann A, Hartig W, Koppe G, Delpech B, Brauer K. Acute and long-lasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain. Exp Brain Res. 1998;121(3):300–10.

Google Scholar 

Carulli D, Verhaagen J. An extracellular perspective on CNS maturation: perineuronal nets and the control of plasticity. Int J Mol Sci. 2021;22(5):2434.

Google Scholar 

Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci. 1998;21(12):510–5.

Google Scholar 

Ciccarelli A, Weijers D, Kwan W, Warner C, Bourne J, Gross CT. Sexually dimorphic perineuronal nets in the rodent and primate reproductive circuit. J Comp Neurol. 2021;529(13):3274–91.

Google Scholar 

Cho MM, DeVries AC, Williams JR, Carter CS. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav Neurosci. 1999;113(5):1071.

Google Scholar 

Coffey KR, Marx RE, Neumaier JF. Deepsqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology. 2019;44(5):859–68.

Google Scholar 

Cornez G, Jonckers E, Ter Haar SM, Van der Linden A, Cornil CA, Balthazart J. Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning. Proc Royal Soc: Biol Sci. 2018;285(1883):20180849.

Google Scholar 

Cornez G, Ter Haar SM, Cornil CA, Balthazart J. Anatomically discrete sex differences in neuroplasticity in zebra finches as reflected by perineuronal nets. PLoS ONE. 2015;10(4): e0123199.

Google Scholar 

Cornez G, Collignon C, Müller W, Ball GF, Cornil CA, Balthazart J. Seasonal changes of perineuronal nets and song learning in adult canaries (Serinus canaria). Behav Brain Res. 2020;380: 112437.

Google Scholar 

Cuarenta A, Kigar SL, Henion IC, Karls KE, Chang L, Bakshi VP, Auger AP. Early life stress increases Line1 within the developing brain in a sex-dependent manner. Brain Res. 2020;1748: 147123.

Google Scholar 

De Vries GJ, Buds RM, Swaab DF. Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res. 1981;218(1–2):67–78.

Google Scholar 

De Vries GJ, Best W, Sluiter AA. The influence of androgens on the development of a sex difference in the vasopressinergic innervation of the rat lateral septum. Dev Brain Res. 1983;8(2–3):377–80.

Google Scholar 

Donaldson ZR, Spiegel L, Young LJ. Central vasopressin V1a receptor activation is independently necessary for both partner preference formation and expression in socially monogamous male prairie voles. Behav Neurosci. 2010;124(1):159.

Google Scholar 

Dubois-Dauphin M, Barberis C, de Bilbao F. Vasopressin receptors in the mouse (Mus musculus) brain: sex-related expression in the medial preoptic area and hypothalamus. Brain Res. 1996;743(1–2):32–9.

Google Scholar 

Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol. 2016;40:1–23.

Google Scholar 

Duque-Wilckens N, Steinman MQ, Laredo SA, Hao R, Perkeybile AM, Bales KL, Trainor BC. Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex-and context-specific anxiogenic effects. Neuropharmacology. 2016;110:59–68.

Google Scholar 

Ferris CF, Potegal M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav. 1988;44(2):235–9.

Google Scholar 

Ferris CF, Axelson JF, Martin AM, Roberge LF. Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience. 1989;29(3):675–83.

Google Scholar 

Fricker BA, Roshko VC, Jiang J, Kelly AM. Partner separation rescues pair bond-induced decreases in hypothalamic oxytocin neural densities. Sci Rep. 2023;13(1): 4835.

Google Scholar 

Fricker BA, Murugan M, Seifert AW, Kelly AM. Cingulate to septal circuitry facilitates the preference to affiliate with large peer groups. Curr Biol. 2024;34(19):4452–63.

Google Scholar 

Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7(11):1325–30.

Google Scholar 

Gleason ED, Marler CA. Testosterone response to courtship predicts future paternal behavior in the California mouse, Peromyscus californicus. Horm Behav. 2010;57(2):147–54.

Google Scholar 

Gleason ED, Holschbach MA, Marler CA. Compatibility drives female preference and reproductive success in the monogamous California mouse (Peromyscus californicus) more strongly than male testosterone measures. Horm Behav. 2012;61(1):100–7.

Google Scholar 

Grillon C, Krimsky M, Charney DR, Vytal K, Ernst M, Cornwell B. Oxytocin increases anxiety to unpredictable threat. Mol Psychiatry. 2013;18(9):958–60.

Google Scholar 

Guoynes C, Marler CA. Unpublished data. 2021

Guoynes C, Marler, C. Paternal behavior from a neuroendocrine perspective. In Oxford Research Encyclopedia of Neuroscience. 2020

Hammock EA, Young LJ. Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci. 2006;361(1476):2187–98.

Google Scholar 

Hammond E, Monari P, Kilponen L, Chen Y, Auger A, Marler C. Oxytocin impairs wound-healing during social isolation but not social living. Psychoneuroendocrinology. 2025. https://doi.org/10.1016/j.psyneuen.2025.107445.

Google Scholar 

Härtig W, Brauer K. Agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport. 1992;3:869–72.

Google Scholar 

Hirota Y, Arai A, Young LJ, Osako Y, Yuri K, Mitsui S. Oxytocin receptor antagonist reverses the blunting effect of pair bonding on fear learning in monogamous prairie voles. Horm Behav. 2020;120: 104685.

Google Scholar 

Huang C, Jia Z, Tang C, Hou W, Li L, Guo X, Zhang L, Qu Y, Li Y, Li Y, Sun Y, Huang K, Han X, He Z, Tai F. Testosterone in puberty regulates emotional contagion and consolation via the vasopressin system in the anterior cingulate cortex of C57BL/6J mice. Neuroendocrinology. 2024;114(11):1018–33.

Google Scholar 

van Heukelum S, Tulva K, Geers FE, van Dulm S, Ruisch IH, Mill J, Viana JF, Beckmann CF, Buitelaar JK, Poelmans G, Glennon JC, Vogt BA, Havenith MN, França AS. A central role for anterior cingulate cortex in the control of pathological aggression. Curr Biol. 2021;31(11):2321–33.

Google Scholar 

Insel TR, Gelhard R, Shapiro LE. The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice. Neuroscience. 1991;43(2–3):623–30.

Google Scholar 

Jiang Y, Platt ML. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex. Sci Rep. 2018;8(1):1–14.

Google Scholar 

Karetko M, Skangiel-Kramska J. Diverse functions of perineuronal nets. Acta Neurobiol Exp (Wars). 2009;69(4):564–77.

Google Scholar 

Kalcounis-Rueppell MC, Pultorak JD, Marler CA. Ultrasonic vocalizations of mice in the genus Peromyscus. Amsterdam: Elsevier; 2018.

Google Scholar 

Khadraoui M, Merritt JR, Hoekstra HE, Bendesky A. Post-mating parental behavior trajectories differ across four species of deer mice. PLoS ONE. 2022;17(10): e0276052.

Google Scholar 

Kim SY, Senatorov VV Jr, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep. 2017;7(1):7711.

Google Scholar 

Kim A, Keum S, Shin HS. Observational fear behavior in rodents as a model for empathy. Genes Brain Behav. 2019;18(1): e12521.

Google Scholar 

Klatt JD, Goodson JL. Sex-specific activity and function of hypothalamic nonapeptide neurons during nest-building in zebra finches. Horm Behav. 2013;64(5):818–24.

Google Scholar 

Kleiman DG. Monogamy in mammals. Q Rev Biol. 1977;52(1):39–69.

Google Scholar 

Ko J. Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and its projection patterns. Front Neural Circuits. 2017;11:41.

Comments (0)

No login
gif