Steele CM, Peladeau-Pigeon M, Barbon CAE, Guida BT, Namasivayam-MacDonald AM, Nascimento WV, et al. Reference values for healthy swallowing across the range from thin to extremely thick liquids. J Speech Lang Hear Res. 2019;62:1338–63. https://doi.org/10.1044/2019_JSLHR-S-18-0448.
Article PubMed PubMed Central Google Scholar
Leonard RJ, Kendall KA, McKenzie S, Gonçalves MI, Walker A. Structural displacements in normal swallowing: a videofluoroscopic study. Dysphagia. 2000;15:146–52. https://doi.org/10.1007/s004550010017.
Article CAS PubMed Google Scholar
Smaoui S, Mancopes R, Simmons MM, Peladeau-Pigeon M, Steele CM. The influence of sex, age, and repeated measurement on pixel-based measures of pharyngeal area at rest. J Speech Lang Hear Res. 2023. https://doi.org/10.1044/2022_JSLHR-22-00465.
Article PubMed PubMed Central Google Scholar
Leonard R. Two methods for quantifying pharyngeal residue on fluoroscopic swallow studies: reliability assessment. Ann Otolaryngol Rhinol. 2017;4:1168. https://doi.org/10.47739/2379-948X/1168.
Leonard R, Miles A, Allen J. Bolus Clearance Ratio elevated in patients with neurogenic dysphagia compared with healthy adults: a measure of pharyngeal efficiency. Am J Speech Lang Pathol. 2023;32:107–14. https://doi.org/10.1044/2022_AJSLP-22-00199.
Yip H, Leonard R, Belafsky PC. Can a fluoroscopic estimation of pharyngeal constriction predict aspiration? Otolaryngol Head Neck Surg. 2006;135:215–7. https://doi.org/10.1016/j.otohns.2006.03.016.
Pearson WG, Molfenter SM, Smith ZM, Steele CM. Image-based measurement of post-swallow residue: the Normalized Residue Ratio Scale. Dysphagia. 2013;28:167–77. https://doi.org/10.1007/s00455-012-9426-9.
Dyer JC, Leslie P, Drinnan MJ. Objective computer-based assessment of valleculae residue– is it useful? Dysphagia. 2008;23:7–15. https://doi.org/10.1007/s00455-007-9088-1.
Curtis JA, Borders JC, Perry SE, Dakin AE, Seikaly ZN, Troche MS. Visual Analysis of Swallowing Efficiency and Safety (VASES): a standardized approach to rating pharyngeal residue, penetration, and aspiration during FEES. Dysphagia. 2022;37:417–35. https://doi.org/10.1007/s00455-021-10293-5.
Neubauer PD, Rademaker AW, Leder SB. The Yale Pharyngeal Residue Severity Rating Scale: an anatomically defined and image-based tool. Dysphagia. 2015;30:521–8. https://doi.org/10.1007/s00455-015-9631-4.
Kaneoka AS, Langmore SE, Krisciunas GP, Field K, Scheel R, McNally E, et al. The Boston Residue and Clearance Scale: preliminary reliability and validity testing. Folia Phoniatr Logop. 2013;65:312–7. https://doi.org/10.1159/000365006.
Curtis JA, Borders JC, Dakin AE, Troche MS. Normative reference values for FEES and VASES: preliminary data from 39 nondysphagic, community-dwelling adults. J Speech Lang Hear Res. 2023;66:2260–77. https://doi.org/10.1044/2023_JSLHR-23-00132.
Sutton S, Lim L, Servino K, To H, Wang L, McCoy Y, et al. Normal values for swallow events during endoscopic evaluation of swallowing: a preliminary study. Eur Arch Otorhinolaryngol. 2024;281:5517–25. https://doi.org/10.1007/s00405-024-08782-y.
Leonard R, Kendall K, McKenzie S. Structural displacements affecting pharyngeal constriction in nondysphagic elderly and nonelderly adults. Dysphagia. 2004;19:133–41. https://doi.org/10.1007/s00455-003-0508-6.
Steele CM, Bayley MT, Bohn MK, Higgins V, Peladeau-Pigeon M, Kulasingam V. Reference values for videofluoroscopic measures of swallowing: an update. J Speech Lang Hear Res. 2023;66:3804–24. https://doi.org/10.1044/2023_JSLHR-23-00246.
Article PubMed PubMed Central Google Scholar
Garand KL, Grissett A, Corbett MM, Molfenter S, Herzberg EG, Kim HJ, et al. Quantifying pharyngeal residue across the adult life span: normative values by age, gender, and swallow task. J Speech Lang Hear Res. 2023. https://doi.org/10.1044/2022_JSLHR-22-00413.
Article PubMed PubMed Central Google Scholar
Schwab RJ, Goldberg AN. Upper airway assessment: radiographic and other imaging techniques. Otolaryngol Clin North Am. 1998;31:931–68. https://doi.org/10.1016/S0030-6665(05)70100-6.
Article CAS PubMed Google Scholar
Ferreira DM, Sjostrom M. 3-dimensional analysis of the pharyngeal airway in healthy adults, an insight. Dent Oral Maxillofac Res. 2022. https://doi.org/10.15761/DOMR.1000397.
Fujii N, Inamoto Y, Saitoh E, Baba M, Okada S, Yoshioka S, et al. Evaluation of swallowing using 320-detector-row multislice CT. part I: single- and multiphase volume scanning for three-dimensional morphological and kinematic analysis. Dysphagia. 2011;26:99–107. https://doi.org/10.1007/s00455-009-9268-2.
Inamoto Y, Saitoh E, Okada S, Kagaya H, Shibata S, Baba M, et al. Anatomy of the larynx and pharynx: effects of age, gender and height revealed by multidetector computed tomography. J Oral Rehabil. 2015;42:670–7. https://doi.org/10.1111/joor.12298.
Article CAS PubMed Google Scholar
Iida T, Kagaya H, Inamoto Y, Shibata S, Saitoh E, Kanamori D, et al. Measurement of pharyngo-laryngeal volume during swallowing using 320-row area detector computed tomography. Dysphagia. 2017;32:749–58. https://doi.org/10.1007/s00455-017-9818-y.
Ito Y, Inamoto Y, Saitoh E, Aihara K, Shibata S, Aoyagi Y, et al. The effect of bolus consistency on pharyngeal volume during swallowing: kinematic analysis in three dimensions using dynamic area detector CT. J Oral Rehabil. 2020;47:1287–96. https://doi.org/10.1111/joor.13062.
Inamoto Y, Saitoh E, Ito Y, Kagaya H, Aoyagi Y, Shibata S, et al. The Mendelsohn Maneuver and its effects on swallowing: kinematic analysis in three dimensions using dynamic area detector CT. Dysphagia. 2018;33:419–30. https://doi.org/10.1007/s00455-017-9870-7.
Inamoto Y, Saitoh E, Aihara K, Ito Y, Kagaya H, Shibata S, et al. Effect of the effortful swallow on pharyngeal cavity volume: kinematic analysis in three dimensions using 320-row area detector computed tomography. Dysphagia. 2023;38:1138–45. https://doi.org/10.1007/s00455-022-10539-w.
Kochi K, Sei H, Tanabe Y, Yasuda K, Kido T, Yamada H, et al. The dynamics of deglutition during head rotation using dynamic 320-row area detector computed tomography. Laryngoscope Investig Oto. 2023;8:746–53. https://doi.org/10.1002/lio2.1082.
Nakayama E, Kagaya H, Saitoh E, Inamoto Y, Hashimoto S, Fujii N, et al. Changes in pyriform sinus morphology in the head rotated position as assessed by 320-row area detector CT. Dysphagia. 2013;28:199–204. https://doi.org/10.1007/s00455-012-9430-0.
Mulheren RW, Inamoto Y, Odonkor CA, Ito Y, Shibata S, Kagaya H, et al. The association of 3-D volume and 2-D area of post-swallow pharyngeal residue on CT imaging. Dysphagia. 2019;34:665–72. https://doi.org/10.1007/s00455-018-09968-3.
Bayona HHG, Inamoto Y, Saitoh E, Aihara K, Kobayashi M, Otaka Y. Prediction of pharyngeal 3D volume using 2D lateral area measurements during swallowing. Dysphagia. 2024;39:783–96. https://doi.org/10.1007/s00455-023-10659-x.
Kayashita J, Fujishima I, Fujitani J, Hironaka S, Kojo A, Mizukami M, et al. The Japanese Dysphagia Diet of 2021 by the Japanese Society of Dysphagia Rehabilitation. Jpn J Compr Rehabil Sci. 2022;13:64–77. https://doi.org/10.11336/jjcrs.13.64.
Article PubMed PubMed Central Google Scholar
Wong MC, Chan KMK, Wong TT, Tang HW, Chung HY, Kwan HS. Quantitative textural and rheological data on different levels of texture-modified food and thickened liquids classified using the International Dysphagia Diet Standardisation Initiative (IDDSI) Guideline. Foods. 2023;12(20):3765. https://doi.org/10.3390/foods12203765.
Comments (0)