Effects of Combined Repetitive Transcranial Magnetic Stimulation and Chin-tuck Against Resistance Dual Stimulation on Swallowing: An fNIRS and EMG Study

Rofes L, Arreola V, Romea M, et al. Pathophysiology of oropharyngeal dysphagia in the frail elderly. Neurogastroenterology Motil. 2010;22(8):851–e230.

Article  CAS  Google Scholar 

Singh R-J, Chen S, Ganesh A, Hill MD. Long-term neurological, vascular, and mortality outcomes after stroke. Int J Stroke. 2018;13(8):787–96.

Article  PubMed  Google Scholar 

Speed L, Harding KE. Tracheostomy teams reduce total tracheostomy time and increase speaking valve use: A systematic review and meta-analysis. J Crit Care. 2013;28(2):e2161–10.

Article  Google Scholar 

Feng X, Todd T, Lintzenich CR, et al. Aging-Related geniohyoid muscle atrophy is related to aspiration status in healthy older adults. Journals Gerontology: Ser A. 2013;68(7):853–60.

Google Scholar 

Ludlow CL. Central nervous system control of voice and swallowing. J Clin Neurophysiol 2015;32(4):294–303.

Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.

Article  PubMed  Google Scholar 

Li K-P, Wu J-J, Zhou Z, et al. Noninvasive brain stimulation for neurorehabilitation in Post-Stroke patients. Brain Sci. 2023;13:451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park J-S, Hwang N-K. Chin tuck against resistance exercise for dysphagia rehabilitation: A systematic review. J Rehabil. 2021;48(8):968–77.

Article  Google Scholar 

Cheng I, Takahashi K, Miller A, Hamdy S. Cerebral control of swallowing: an update on neurobehavioral evidence. J Neurol Sci. 2022;442:120434. https://doi.org/10.1016/j.jns.2022.120434.

Article  PubMed  Google Scholar 

Zhang Z, Yan L, Xing X, Zhu L, Wu H, Xu S, Wan P, Ding R. Brain activation site of laryngeal elevation during swallowing: an fMRI study. Dysphagia. 2023;38(1):268–77. https://doi.org/10.1007/s00455-022-10464-y.

Article  PubMed  Google Scholar 

Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16.

Article  PubMed  Google Scholar 

Fu X, Li H, Yang W, et al. Electroacupuncture at HT5 + GB20 produces stronger activation effect on swallowing cortex and muscle than single points. Heliyon. 2023;9(11):e21922.

Article  PubMed  PubMed Central  Google Scholar 

Mosier KM, Liu W-C, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: A functional MR imaging study. Am J Neuroradiol. 1999;20(8):1520.

CAS  PubMed  PubMed Central  Google Scholar 

Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood Estimation meta-analysis. Hum Brain Mapp. 2009;30(8):2426–39.

Article  PubMed  Google Scholar 

Martin R, Goodyear B, Gati S, Menon R. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.

Article  CAS  PubMed  Google Scholar 

Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia. 1993;8(3):195–202.

Article  CAS  PubMed  Google Scholar 

Leff DR, Orihuela-Espina F, Elwell CE et al. Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage. 2011; 54(4): 2922-36.

Duan L, Zhang Y-J, Zhu C-Z. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study. NeuroImage. 2012;60(4):2008–18.

Article  PubMed  Google Scholar 

Knollhoff SM, Hancock AS, Barrett TS, Gillam RB. Cortical activation of swallowing using fNIRS: A proof of concept study with healthy adults. Dysphagia. 2022;37(6):1501–10.

Article  PubMed  Google Scholar 

Dong L, Ma W, Wang Q, et al. The effect of repetitive transcranial magnetic stimulation of cerebellar swallowing cortex on brain neural activities: A Resting-State fMRI study. Front Hum Neurosci. 2022;16:802996.

Article  PubMed  PubMed Central  Google Scholar 

Ding Q, Ou Z, Yao S, Wu C, Chen J, Shen J, Lan Y, Xu G. Cortical activation and brain network efficiency during dual tasks: an fNIRS study. NeuroImage. 2024;289:120545. https://doi.org/10.1016/j.neuroimage.2024.120545.

Article  PubMed  Google Scholar 

Xin, Lei. Pei-Luen Patrick rau. Emotional responses to performance feedback in an educational game during Cooperation and competition with a robot: evidence from fNIRS. Comput Hum Behav. 2023;138:107496.

Xin-Ke P, Jing JF-YLIU, et al. Near-infrared brain function imaging during repeated saliva swallowing tests in healthy adults. Tissue Eng Res China. 2023;27(32):5103.

Google Scholar 

Yao L, Ye Q, Liu Y, et al. Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei. Nat Commun. 2023;14(1):810.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui S, Yao S, Wu C et al. Electroacupuncture Involved in Motor Cortex and Hypoglossal Neural Control to Improve Voluntary Swallowing of Poststroke Dysphagia Mice. Neural Plasticity. 2020; 2020(1): 8857543.

Kober S, Wood G. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: A Near-Infrared spectroscopy study. NeuroImage 2014;93:1–10.

Inamoto K, Sakuma S, Ariji Y, Higuchi N, Izumi M, Nakata K. Measurement of cerebral blood volume dynamics during volitional swallowing using functional near-infrared spectroscopy: an exploratory study. Neurosci Lett. 2015;588:67–71.

Article  CAS  PubMed  Google Scholar 

Huckabee ML, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the bereitschaftspotential. Brain Topogr. 2003;16:3–17.

Article  PubMed  Google Scholar 

Ikeda A, Luders HO, Burgess RC, Shibasaki H. Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain. 1992;115:1017–43.

Article  PubMed  Google Scholar 

Jing Y, Lin T, Li W-q, et al. Comparison of activation patterns in mirror neurons and the swallowing network during action observation and execution: A Task-Based fMRI study. Front NeuroSci. 2020;14:867.

Article  PubMed  PubMed Central  Google Scholar 

Xin W, Junwei P. Hemodynamic signal changes and functional connectivity in acute stroke patients with dysphagia during volitional swallowing: a pilot study. Med Phys. 2023;50(8):5166–75.

Pazzaglia M, Galli G. Loss of agency in apraxia. Front Hum Neurosci 2014;8:751.

Mosier KM. The motor control of swallowing. University of Connecticut; 1997.

D’Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network. Brain Struct Function. 2021;226(9):3007–22.

Article  Google Scholar 

Toshiya Nonaka M, Yoshida, et al. Contingent negative variations associated with command swallowing in humans. Clin Neurophysiol. 2009;120:1845–51.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif