Meta-UNet: enhancing skin-lesion segmentation with multimodal feature integration and uncertainty estimation

Zhang Y, Shen Z, Jiao R (2024) Segment anything model for medical image segmentation: current applications and future directions. Comput Biol Med 171:108238

PubMed  Google Scholar 

Sikha O, Galdran A, Riera-Marin M, García J, Rodríguez-Comas J, Piella G, Ballester MAG (2024) Uncertainty aware segmentation quality assessment in medical images. In: 2024 IEEE international symposium on biomedical imaging (ISBI), IEEE, pp 1–5

Vasquez-Espinoza L, Castillo-Cara M, Orozco-Barbosa L (2021) On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Syst Appl 184:115486

Google Scholar 

Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd international symposium on computer-based medical systems (CBMS), IEEE, pp 558–564

Basak H, Kundu R, Sarkar R (2022) Mfsnet: a multi focus segmentation network for skin lesion segmentation. Pattern Recogn 128:108673

Google Scholar 

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, pp 234–241

Yagi N, Nii M, Kobashi S (2019) Abdominal organ area segmentation using u-net for cancer radiotherapy support. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), pp 1210–1214

Kakeya H, Okada T, Oshiro Y (2018) 3D UJAPANet: mixture of convolutional networks for abdominal multi-organ CT segmentation. In: MICCAI 2018, pp 426–433

Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th international conference on 3D vision (3DV), pp 565–571

Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

Sinha A, Dolz J (2019) Multi-scale self-guided attention for medical image segmentation. IEEE J Biomed Health Inform 25:121–130

Google Scholar 

Gu R, Wang G, Song T, Huang R, Aertsen M, Deprest J, Ourselin S, Vercauteren T, Zhang S (2020) CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans Med Imaging 40(2):699–711

Google Scholar 

Li Y, Yang J, Ni J, Elazab A, Wu J (2021) TA-Net: triple attention network for medical image segmentation. Comput Biol Med 137:104836

PubMed  Google Scholar 

Zhang Z, Fu H, Dai H, Shen J, Pang Y, Shao L (2019) ET-Net: A generic edge-attention guidance network for medical image segmentation. In: Medical image computing and computer assisted intervention–miccai 2019: 22nd international conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22, Springer, pp 442–450

Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning, PMLR, pp 1050–1059

Dong C, Dai D, Zhang Y, Zhang C, Li Z, Xu S (2023) Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification. Comput Biol Med 152:106321

PubMed  Google Scholar 

Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in neural information processing Systems, vol 30

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30

Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y (2021) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2022) Swin-unet: Unet-like pure transformer for medical image segmentation. In: European conference on computer vision, Springer, pp 205–218

Perera S, Erzurumlu Y, Gulati D, Yilmaz A (2024) Mobileunetr: A lightweight end-to-end hybrid vision transformer for efficient medical image segmentation. arXiv preprint arXiv:2409.03062

Wang J, Wei L, Wang L, Zhou Q, Zhu L, Qin J (2021) Boundary-aware transformers for skin lesion segmentation. In: Medical image computing and computer assisted intervention–mICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part i 24, pp. 206–216. Springer

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867

PubMed  PubMed Central  Google Scholar 

Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, Johansen HD (2019) Resunet++: An advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), IEEE, pp 225–2255

Isensee F, Jaeger PF, Kohl SAA, Peterson J, Maier-Hein KH (2020) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211

PubMed  Google Scholar 

Plutenko I, Papkov M, Palo K, Parts L, Fishman D (2023) Metadata improves segmentation through multitasking elicitation. In: MICCAI workshop on domain adaptation and representation transfer, Springer, pp 147–155

Gu R, Zhang Y, Wang L, Chen D, Wang Y, Ge R, Jiao Z, Ye J, Jia G, Wang L (2024) Mmy-net: a multimodal network exploiting image and patient metadata for simultaneous segmentation and diagnosis. Multimedia Syst 30:72

Google Scholar 

Khan A, Asad M, Benning M, Roney C, Slabaugh G (2024) Compositional segmentation of cardiac images leveraging metadata

Sikha O, Riera-Marín M, Galdran A, López JG, Rodríguez-Comas J, Piella G, Ballester MAG (2025) Uncertainty-aware segmentation quality prediction via deep learning Bayesian modeling: comprehensive evaluation and interpretation on skin cancer and liver segmentation. Comput Med Imaging Graph 123:102547

Google Scholar 

Mehrtash A, Wells WM, Tempany CM, Abolmaesumi P, Kapur T (2020) Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans Med Imaging 39(12):3868–3878

PubMed  PubMed Central  Google Scholar 

Mendonça T, Ferreira PM, Marques J, Marcal ARS, Rozeira J (2013) \(\text^\) - a dermoscopic image database for research and benchmarking. In: 35th international conference of the IEEE engineering in medicine and biology society

Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368

Tschandl P, Rosendahl C, Kittler H (2018) The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5(1):1–9

Google Scholar 

Comments (0)

No login
gif