Zhang Y, Shen Z, Jiao R (2024) Segment anything model for medical image segmentation: current applications and future directions. Comput Biol Med 171:108238
Sikha O, Galdran A, Riera-Marin M, García J, Rodríguez-Comas J, Piella G, Ballester MAG (2024) Uncertainty aware segmentation quality assessment in medical images. In: 2024 IEEE international symposium on biomedical imaging (ISBI), IEEE, pp 1–5
Vasquez-Espinoza L, Castillo-Cara M, Orozco-Barbosa L (2021) On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Syst Appl 184:115486
Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd international symposium on computer-based medical systems (CBMS), IEEE, pp 558–564
Basak H, Kundu R, Sarkar R (2022) Mfsnet: a multi focus segmentation network for skin lesion segmentation. Pattern Recogn 128:108673
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, pp 234–241
Yagi N, Nii M, Kobashi S (2019) Abdominal organ area segmentation using u-net for cancer radiotherapy support. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), pp 1210–1214
Kakeya H, Okada T, Oshiro Y (2018) 3D UJAPANet: mixture of convolutional networks for abdominal multi-organ CT segmentation. In: MICCAI 2018, pp 426–433
Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th international conference on 3D vision (3DV), pp 565–571
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999
Sinha A, Dolz J (2019) Multi-scale self-guided attention for medical image segmentation. IEEE J Biomed Health Inform 25:121–130
Gu R, Wang G, Song T, Huang R, Aertsen M, Deprest J, Ourselin S, Vercauteren T, Zhang S (2020) CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans Med Imaging 40(2):699–711
Li Y, Yang J, Ni J, Elazab A, Wu J (2021) TA-Net: triple attention network for medical image segmentation. Comput Biol Med 137:104836
Zhang Z, Fu H, Dai H, Shen J, Pang Y, Shao L (2019) ET-Net: A generic edge-attention guidance network for medical image segmentation. In: Medical image computing and computer assisted intervention–miccai 2019: 22nd international conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22, Springer, pp 442–450
Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning, PMLR, pp 1050–1059
Dong C, Dai D, Zhang Y, Zhang C, Li Z, Xu S (2023) Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification. Comput Biol Med 152:106321
Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in neural information processing Systems, vol 30
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y (2021) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2022) Swin-unet: Unet-like pure transformer for medical image segmentation. In: European conference on computer vision, Springer, pp 205–218
Perera S, Erzurumlu Y, Gulati D, Yilmaz A (2024) Mobileunetr: A lightweight end-to-end hybrid vision transformer for efficient medical image segmentation. arXiv preprint arXiv:2409.03062
Wang J, Wei L, Wang L, Zhou Q, Zhu L, Qin J (2021) Boundary-aware transformers for skin lesion segmentation. In: Medical image computing and computer assisted intervention–mICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part i 24, pp. 206–216. Springer
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867
PubMed PubMed Central Google Scholar
Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, Johansen HD (2019) Resunet++: An advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), IEEE, pp 225–2255
Isensee F, Jaeger PF, Kohl SAA, Peterson J, Maier-Hein KH (2020) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211
Plutenko I, Papkov M, Palo K, Parts L, Fishman D (2023) Metadata improves segmentation through multitasking elicitation. In: MICCAI workshop on domain adaptation and representation transfer, Springer, pp 147–155
Gu R, Zhang Y, Wang L, Chen D, Wang Y, Ge R, Jiao Z, Ye J, Jia G, Wang L (2024) Mmy-net: a multimodal network exploiting image and patient metadata for simultaneous segmentation and diagnosis. Multimedia Syst 30:72
Khan A, Asad M, Benning M, Roney C, Slabaugh G (2024) Compositional segmentation of cardiac images leveraging metadata
Sikha O, Riera-Marín M, Galdran A, López JG, Rodríguez-Comas J, Piella G, Ballester MAG (2025) Uncertainty-aware segmentation quality prediction via deep learning Bayesian modeling: comprehensive evaluation and interpretation on skin cancer and liver segmentation. Comput Med Imaging Graph 123:102547
Mehrtash A, Wells WM, Tempany CM, Abolmaesumi P, Kapur T (2020) Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans Med Imaging 39(12):3868–3878
PubMed PubMed Central Google Scholar
Mendonça T, Ferreira PM, Marques J, Marcal ARS, Rozeira J (2013) \(\text^\) - a dermoscopic image database for research and benchmarking. In: 35th international conference of the IEEE engineering in medicine and biology society
Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368
Tschandl P, Rosendahl C, Kittler H (2018) The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5(1):1–9
Comments (0)