Chen J, Zhang D, Yan W, Yang D, Shen B (2013) Translational bioinformatics for diagnostic and prognostic prediction of prostate cancer in the next-generation sequencing era. BioMed Res Int 2013:901578
PubMed PubMed Central Google Scholar
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S (2022) Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules 27(17):5730
CAS PubMed PubMed Central Google Scholar
Chen Q, Song H, Yu J, Kim K (2021) Current development and applications of super-resolution ultrasound imaging. Sensors 21(7):2417
PubMed PubMed Central Google Scholar
Liu S, Wang Y, Yang X, Lei B, Liu L, Li S, Ni D, Wang T (2019) Deep learning in medical ultrasound analysis: a review. Engineering 5(2):261–275
Pang Y, Lin J, Qin T, Chen Z (2021) Image-to-image translation: methods and applications. IEEE Trans Multimedia 24:3859–3881
Jiao J, Namburete A, Papageorghiou A, Noble J (2020) Self-supervised ultrasound to MRI fetal brain image synthesis. IEEE Trans Med Imaging 39(12):4413–4424
Sun H, Lu Z, Fan R, Xiong W, Xie K, Ni X, Yang J (2021) Research on obtaining pseudo CT images based on stacked generative adversarial network. Quant Imaging Med Surg 11(5):1983
PubMed PubMed Central Google Scholar
Barkat L, Freiman M, Azhari H (2023) Image translation of breast ultrasound to pseudo anatomical display by CycleGAN. Bioengineering 10(3):388
PubMed PubMed Central Google Scholar
Jiang W, Yu C, Chen X, Zheng Y, Bai C (2022) Ultrasound to X-ray synthesis generative attentional network (UXGAN) for adolescent idiopathic scoliosis. Ultrasonics 126:106819
Vukovic D, Ruvinov I, Antico M, Steffens M, Fontanarosa D (2023) Automatic GAN-based MRI volume synthesis from US volumes: a proof of concept investigation. Sci Rep 13(1):21716
CAS PubMed PubMed Central Google Scholar
Dorent R, Haouchine N, Kogl F, Joutard S, Juvekar P, Torio E, Golby A, Ourselin S, Frisken S, Vercauteren T, Kapur T (2023)Unified brain MR-ultrasound synthesis using multi-modal hierarchical representations. In: In International conference on medical image computing and computer-assisted intervention, Cham: Springer Nature Switzerland
Sara U, Akter M, Uddin M (2019) Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. J Comput Commun 7(3):8–18
Zhang L, Shen Y, Li H (2014) A visual saliency-induced index for perceptual image quality assessment. IEEE Trans Image Process 23(10):4270–4281
Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386
Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process 21(4):1500–1512
Zhang X, Feng X, Wang W, Xue W (2013) Edge strength similarity for image quality assessment. IEEE Signal Process Lett 20(4):319–322
Alotaibi A (2020) Deep generative adversarial networks for image-to-image translation: a review. Symmetry 12(10):1705
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti A, Bellomi M (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2(1):1–8
Ghezzo S, Bezzi C, Presotto L, Mapelli P, Bettinardi V, Savi A, Neri I, Preza E, Gajate A, De Cobelli F, Scifo P (2022) State of the art of radiomic analysis in the clinical management of prostate cancer: a systematic review. Crit Rev Oncol Hematol 169:103544
Woznicki P, Laqua F, Bley T, Baeßler B (2022) AutoRadiomics: a framework for reproducible radiomics research. Front Radiol 2:919133
PubMed PubMed Central Google Scholar
Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A (2022) Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 19(2):132–146
Losnegård A, Reisæter L, Halvorsen O, Jurek J, Assmus J, Arnes J, Honoré A, Monssen J, Andersen E, Haldorsen I, Lundervold A (2020) Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and high-risk prostate cancer patients. Acta Radiol 61(11):1570–1579
Ching J, Lam S, Lam C, Lui A, Kwong J, Lo A, Chan J, Cai J, Leung W, Lee S (2023) Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer. Front Oncol 13:1060687
PubMed PubMed Central Google Scholar
Zheng H, Miao Q, Liu Y, Mirak S, Hosseiny M, Scalzo F, Raman S, Sung K (2022) Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer. Eur Radiol 32(8):5688–6569
CAS PubMed PubMed Central Google Scholar
Brunese L, Mercaldo F, Reginelli A, Santone A (2020) Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers. Magn Reson Imaging 66:165–175
Castillo T, Arif M, Starmans M, Niessen W, Bangma C, Schoots I, Veenland J (2021) Classification of clinically significant prostate cancer on multi-parametric MRI: a validation study comparing deep learning and radiomics. Cancers 14(1):12
Nayagam R, Selvathi D (2024) A systematic review of deep learning methods for the classification and segmentation of prostate cancer on magnetic resonance images. Int J Imaging Syst Technol 34(2):e23064
Rajesh M, Chandrasekar B (2023) Multi-class classification of prostate cancer MR images based ob UCLA score using REGNETY320 model. ARPN J Eng Appl Sci 18(2):90–101
Yongkai L, Zheng H, Liang Z, Miao Q, Brisbane W, Marks L, Raman S, Reiter R, Yang G, Sung K (2021) Textured-based deep learning in prostate cancer classification with 3T multiparametric MRI: comparison with PI-RADS-based classification. Diagnostics 11(10):1785
Kott O, Linsley D, Amin A, Karagounis A, Jeffers C, Golijanin D, Serre T, Gershman B (2021) Development of a deep learning algorithm for the histopathologic diagnosis and gleason grading of prostate cancer biopsies: a pilot study. Eur Urol Focus 7(2):347–351
Iqbal S, Siddiqui G, Rehman A, Hussain L, Saba T, Tariq U, Abbasi A (2021) Prostate cancer detection using deep learning and traditional techniques. IEEE Access 9:27085–27100
Abbasi A, Hussain L, Awan I, Abbasi I, Majid A, Nadeem M, Chaudhary Q (2020) Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn Neurodyn 14:523–533
PubMed PubMed Central Google Scholar
Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G (2020) High-accuracy prostate cancer pathology using deep learning. Nat Mach Intell 2:411–418
Kumar N, Verma R, Arora A, Kumar A, Gupta S, Sethi A, Gann P (2017) Convolutional neural networks for prostate cancer recurrence prediction. Digit Pathol (SPIE) 10140:106–117
Yoo S, Gujrathi I, Haider M, Khalvati F (2019) Prostate cancer detection using deep convolutional neural networks. Sci Rep 9(1):19518
CAS PubMed PubMed Central Google Scholar
Natarajan S, Priester A, Margolis D, Huang J, Marks L (2020) Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy) (version 2). Cancer Imaging Arch 10:7937
Barentsz J, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Fütterer J (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757
PubMed PubMed Central Google Scholar
Hu J, Chang E, Natarajan S, Margolis D, Macairan M, Lieu P, Huang J, Sonn G, Dorey F, Marks L (2014) Targeted prostate biopsy to select men for active surveillance: do the Epstein criteria still apply? J Urol 192(2):385–390
PubMed PubMed Central Google Scholar
Litwin M, Hays R, Fink A, Ganz P, Leake B, Brook R (1998) The UCLA prostate cancer index: development, reliability, and validity of a health-related quality of life measure. Med Care 36(7):1002–1012
de Souza V, Marques B, Batagelo H, Gois J (2023) A review on generative adversarial networks for image generation. Comput Graph 114:13–25
Dorjsembe Z, Pao H, Odonchimed S, Xiao F (2024) Conditional diffusion models for semantic 3D brain MRI synthesis. IEEE J Biomed Health Inform 28(7):4084–4093
Chen Y, Konz N, Gu H, Dong H, Chen Y, Li L, Lee J, Mazurowski M (2024) Contourdiff: Unpaired image translation with contour-guided diffusion models. arXiv preprint, pp. 1–11
Salmanpour M, Shiri I, Hosseinzadeh M, Zaidi H, Ashrafinia S, Oveisi M, Rahmim A (2023) ViSERA: visualized & standardized environment for radiomics analysis-a shareable, executable, and reproducible workflow generator. In: 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), Vancouver
Salmanpour M, Saberi A, Shamsaei M, Rahmim A (2020) Optimal feature selection and machine learning for prediction of outcome in Parkinson’s disease. In: Journal of Nuclear Medicine
Talaat F, El-Sappagh S, Alnowaiser K, Hassan E (2024) Improved prostate cancer diagnosis using a modified ResNet50-based deep learning architecture. BMC Med Inform Decis Mak 24(1):23
PubMed PubMed Central Google Scholar
Koo T, Li M (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163
PubMed PubMed Central Google Scholar
Salmanpour M, Amiri S, Gharibi S, Shariftabrizi A, Xu Y, Weeks W, Rahmim A, Hacihaliloglu I (2024) Biological and Radiological Dictionary of Radiomics Features: Addressing Understandable AI Issues in Personalized Prostate Cancer; Dictionary version PM1. 0. arXiv preprint, pp. 1–24
Yuan S, Liu Y, Wei R, Zhu J, Men K, Dai J (2023) A novel loss function to reproduce texture features for deep learning-based MRI-to-CT synthesis. Med Phys 51:1–12
Comments (0)