Efficient needle guidance: multi-camera augmented reality navigation without patient-specific calibration

Nicolau SA, Pennec X, Soler L, Buy X, Gangi A, Ayache N, Marescaux J (2009) An augmented reality system for liver thermal ablation: design and evaluation on clinical cases. Med Image Anal 13(3):494–506. https://doi.org/10.1016/j.media.2009.02.003. (Accessed 2022-02-05)

Article  CAS  PubMed  Google Scholar 

Lin MA, Siu AF, Bae JH, Cutkosky MR, Daniel BL (2018) HoloNeedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction. IEEE Robot Autom Lett 3(4):4156–4162. https://doi.org/10.1109/LRA.2018.2863381. (Accessed 2022-02-04)

Article  Google Scholar 

Li R, Tong Y, Yang T, Guo J, Si W, Zhang Y, Klein R, Heng P-A (2021) Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality. Comput Med Imaging Graph 90:101905. https://doi.org/10.1016/j.compmedimag.2021.101905. (Accessed 2023-11-30)

Article  PubMed  Google Scholar 

Hecht R, Li M, Ruiter Q, Pritchard WF, Li X, Krishnasamy V, Saad W, Karanian JW, Wood BJ (2020) Smartphone Augmented Reality CT-Based Platform for Needle Insertion Guidance: A Phantom Study. Cardiovasc Intervent Radiol 43(5):756–764. https://doi.org/10.1007/s00270-019-02403-6. (Accessed 2021-09-05)

Article  PubMed  PubMed Central  Google Scholar 

Li M, Seifabadi R, Long D, De Ruiter Q, Varble N, Hecht R, Negussie AH, Krishnasamy V, Xu S, Wood BJ (2020) Smartphone- versus smartglasses-based augmented reality (AR) for percutaneous needle interventions: system accuracy and feasibility study. Int J Comput Assist Radiol Surg 15(11):1921–1930. https://doi.org/10.1007/s11548-020-02235-7. (Accessed 2021-04-06)

Article  PubMed  PubMed Central  Google Scholar 

Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142. https://doi.org/10.1146/annurev-bioeng-070909-105249. (Accessed 2023-11-30)

Article  CAS  PubMed  Google Scholar 

Ma C, Chen G, Zhang X, Ning G, Liao H (2019) Moving-tolerant augmented reality surgical navigation system using autostereoscopic three-dimensional image overlay. IEEE J Biomed Health Inform 23(6):2483–2493. https://doi.org/10.1109/JBHI.2018.2885378. (Accessed 2023-11-13)

Article  PubMed  Google Scholar 

Wang J, Qian L, Azimi E, Kazanzides P (2017) Prioritization and static error compensation for multi-camera collaborative tracking in augmented reality. In: 2017 IEEE Virtual Reality (VR), pp. 335–336. IEEE, Los Angeles, CA, USA. https://doi.org/10.1109/VR.2017.7892313. http://ieeexplore.ieee.org/document/7892313/ (Accessed 2023-04-14)

Marinetto E, Garcia-Mato D, Garcia A, Martinez S, Desco M, Pascau J (2018) Multicamera Optical Tracker Assessment for Computer Aided Surgery Applications. IEEE Access 6:64359–64370. https://doi.org/10.1109/ACCESS.2018.2878323. (Accessed 2023-04-14)

Article  Google Scholar 

Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Medina-Carnicer R (2016) Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit 51:481–491

Google Scholar 

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp. 779–788. IEEE, Las Vegas, NV, USA. https://doi.org/10.1109/CVPR.2016.91. http://ieeexplore.ieee.org/document/7780460/ (Accessed 2023-11-17)

Wei Y, Zhou SZ (2023) Towards seamless surgical guidance: a robust marker-based multi-camera AR navigation system with advanced calibration and detection techniques. In: International conference on medical imaging and computer-aided diagnosis. Springer, pp 260–270

Hu D, DeTone D, Malisiewicz T (2019) Deep ChArUco: Dark ChArUco Marker Pose Estimation. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 8428–8436. IEEE, Long Beach, CA, USA. https://doi.org/10.1109/CVPR.2019.00863. https://ieeexplore.ieee.org/document/8953882/ (Accessed 2022-05-30)

Li A, Wang L, Wu D (2010) Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product. Int J Phys Sci 5(10):1530–1536

Google Scholar 

Coughlan JM, Yuille AL (1999) Manhattan world: compass direction from a single image by bayesian inference. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 941–947. IEEE

Welzl E (2005) Smallest enclosing disks (balls and ellipsoids). In: New results and new trends in computer science: Graz, Austria, June 20–21, 1991 Proceedings, pp 359–370. Springer

Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2):111–122

Google Scholar 

Community BO (2018) Blender - a 3D Modelling and Rendering Package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.org

Muñoz-Salinas R, Marín-Jimenez MJ, Yeguas-Bolivar E, Medina-Carnicer R (2018) Mapping and localization from planar markers. Pattern Recognit 73:158–171. https://doi.org/10.1016/j.patcog.2017.08.010. (Accessed 2021-07-22)

Daoud MI, Alshalalfah A-L, Ait Mohamed O, Alazrai R (2018) A hybrid camera- and ultrasound-based approach for needle localization and tracking using a 3D motorized curvilinear ultrasound probe. Med Image Anal 50:145–166. https://doi.org/10.1016/j.media.2018.09.006. (Accessed 2022-05-11)

Article  PubMed  Google Scholar 

Comments (0)

No login
gif