Kim J, Harper A, McCormack V et al (2025) Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med 31:1154–1162. https://doi.org/10.1038/s41591-025-03502-3
Article CAS PubMed Google Scholar
National Cancer Institute (2025) Cancer Trends Progress Report. National Cancer Institute, NIH, DHHS, Bethesda, MD. https://progressreport.cancer.gov
Houssami N, Macaskill P, Marinovich ML, Morrow M (2014) The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: A meta-analysis. Ann Surg Oncol 21(3):717–730. https://doi.org/10.1245/s10434-014-3480-5
Article PubMed PubMed Central Google Scholar
Kopicky L, Fan B, Valente SA (2024) Intraoperative evaluation of surgical margins in breast cancer. Semin Diagn Pathol 41(6):293–300. https://doi.org/10.1053/j.semdp.2024.06.005
Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezso B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194–9319493. https://doi.org/10.1126/scitranslmed.3005623
Santilli AML, Jamzad A, Sedghi A, Kaufmann M, Merchant S, Engel J, Logan K, Wallis J, Janssen N, Varmak S, Fichtinger G, Rudan JF, Mousavi P (2021) Self-supervised learning for detection of breast cancer in surgical margins with limited data. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 980–984. https://doi.org/10.1109/ISBI48211.2021.9433829
Jamzad A, Fooladgar F, Connolly L, Srikanthan D, Syeda A, Kaufmann M, Ren KYM, Merchant S, Engel J, Varma S, Fichtinger G, Rudan JF, Mousavi P (2023) Bridging ex-vivo training and intra-operative deployment for surgical margin assessment with evidential graph transformer. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-Mahmood T, Taylor R (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Springer, Cham. pp. 562–571. https://doi.org/10.1007/978-3-031-43990-2_53
Connolly L, Fooladgar F, Jamzad A et al (2024) ImSpect: image-driven self-supervised learning for surgical margin evaluation with mass spectrometry. Int J Comput Assist Radiol Surg 19:1129–1136. https://doi.org/10.1007/s11548-024-03106-1
King ME, Zhang J, Lin JQ, Garza KY, DeHoog RJ, Feider CL, Bensussan A, Sans M, Krieger A, Badal S, Keating MF, Woody S, Dhingra S, Yu W, Pirko C, Brahmbhatt KA, Buren GV, Fisher WE, Suliburk J, Eberlin LS (2021) Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the masspec pen technology. Proc Natl Acad Sci 118(28):2104411118. https://doi.org/10.1073/pnas.2104411118
Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, Lathouras K, Rosini F, Szasz M, Savage A et al (2020) The intelligent knife (iknife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proc Natl Acad Sci 117(13):7338–7346. https://doi.org/10.1073/pnas.1916960117
Article CAS PubMed PubMed Central Google Scholar
Santilli AML, Jamzad A, Sedghi A, Kaufmann M, Logan K, Wallis J, Ren KYM, Janssen N, Merchant S, Engel J, McKay D, Varma S, Wang A, Fichtinger G, Rudan JF, Mousavi P (2021) Domain adaptation and self-supervised learning for surgical margin detection. Int J Comput Assist Radiol Surg 16(5):861–869. https://doi.org/10.1007/s11548-021-02381-6
Seliya N, Abdollah Zadeh A, Khoshgoftaar TM (2021) A literature review on one-class classification and its potential applications in big data. J Big Data 8:122. https://doi.org/10.1186/s40537-021-00514-x
Zheng C, Chen S, Wang W, Lu J (2013) Using principal component analysis to solve a class imbalance problem in traffic incident detection. Math Probl Eng 2013(1):524861. https://doi.org/10.1155/2013/524861
Yadav K, Aswal US, Saravanan V, Dwivedi SP, Shalini N, Kumar N (2023) Isolation forest anomaly detection in vital sign monitoring for healthcare. In: 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), vol. 1, pp. 1–7. https://doi.org/10.1109/ICAIIHI57871.2023.10488940
Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. https://doi.org/10.1109/ICDM.2008.17 . IEEE
Alzahrani AA, Alharithi FS (2024) Machine learning approaches for advanced detection of rare genetic disorders in whole-genome sequencing. Alex Eng J 106:582–593. https://doi.org/10.1016/j.aej.2024.08.056
Wang J, Cherian A (2019) Gods: Generalized one-class discriminative subspaces for anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8200–8210. https://doi.org/10.1109/ICCV.2019.00829
Cherian A, Wang J (2022) Generalized one-class learning using pairs of complementary classifiers. IEEE Trans Pattern Anal Mach Intell 44(10):6993–7009. https://doi.org/10.1109/TPAMI.2021.3092999
Tschuchnig ME, Gadermayr M (2022) Anomaly detection in medical imaging-a mini review. In: Data Science–Analytics and Applications: Proceedings of the 4th International Data Science Conference–iDSC2021, pp. 33–38. https://doi.org/10.1007/978-3-658-36295-9_5 . Springer
Hassan MA, Weyers B, Bec J, Qi J, Gui D, Bewley A, Abouyared M, Farwell G, Birkeland A, Marcu L (2023) Flim-based in vivo classification of residual cancer in the surgical cavity during transoral robotic surgery. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-Mahmood T, Taylor R (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Springer, Cham. pp. 587–596. https://doi.org/10.1007/978-3-031-43996-4_56
Elleuch JF, Mehdi MZ, Belaaj M, Benayed NG, Sellami D, Damak A (2023) Breast cancer anomaly detection based on the possibility theory with a clustering paradigm. Biomed Signal Process Control 79:104043. https://doi.org/10.1016/j.bspc.2022.104043
Baur C, Wiestler B, Muehlau M, Zimmer C, Navab N, Albarqouni S (2021) Modeling healthy anatomy with artificial intelligence for unsupervised anomaly detection in brain MRI. Radiol Artif Intell 3(3):190169. https://doi.org/10.1148/ryai.2021190169
Zhang J, Xie Y, Pang G, Liao Z, Verjans J, Li W, Sun Z, He J, Li Y, Shen C, Xia Y (2021) Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection. IEEE Trans Med Imaging 40(3):879–890. https://doi.org/10.1109/TMI.2020.3040950
Michael-Pitschaze T, Cohen N, Ofer D, Hoshen Y, Linial M (2024) Detecting anomalous proteins using deep representations. NAR Genom Bioinf 6(1):021. https://doi.org/10.1093/nargab/lqae021
Comments (0)