Anomaly detection using intraoperative iKnife data: a comparative analysis in breast cancer surgery

Kim J, Harper A, McCormack V et al (2025) Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med 31:1154–1162. https://doi.org/10.1038/s41591-025-03502-3

Article  CAS  PubMed  Google Scholar 

National Cancer Institute (2025) Cancer Trends Progress Report. National Cancer Institute, NIH, DHHS, Bethesda, MD. https://progressreport.cancer.gov

Houssami N, Macaskill P, Marinovich ML, Morrow M (2014) The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: A meta-analysis. Ann Surg Oncol 21(3):717–730. https://doi.org/10.1245/s10434-014-3480-5

Article  PubMed  PubMed Central  Google Scholar 

Kopicky L, Fan B, Valente SA (2024) Intraoperative evaluation of surgical margins in breast cancer. Semin Diagn Pathol 41(6):293–300. https://doi.org/10.1053/j.semdp.2024.06.005

Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezso B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194–9319493. https://doi.org/10.1126/scitranslmed.3005623

Article  CAS  Google Scholar 

Santilli AML, Jamzad A, Sedghi A, Kaufmann M, Merchant S, Engel J, Logan K, Wallis J, Janssen N, Varmak S, Fichtinger G, Rudan JF, Mousavi P (2021) Self-supervised learning for detection of breast cancer in surgical margins with limited data. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 980–984. https://doi.org/10.1109/ISBI48211.2021.9433829

Jamzad A, Fooladgar F, Connolly L, Srikanthan D, Syeda A, Kaufmann M, Ren KYM, Merchant S, Engel J, Varma S, Fichtinger G, Rudan JF, Mousavi P (2023) Bridging ex-vivo training and intra-operative deployment for surgical margin assessment with evidential graph transformer. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-Mahmood T, Taylor R (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Springer, Cham. pp. 562–571. https://doi.org/10.1007/978-3-031-43990-2_53

Connolly L, Fooladgar F, Jamzad A et al (2024) ImSpect: image-driven self-supervised learning for surgical margin evaluation with mass spectrometry. Int J Comput Assist Radiol Surg 19:1129–1136. https://doi.org/10.1007/s11548-024-03106-1

Article  PubMed  Google Scholar 

King ME, Zhang J, Lin JQ, Garza KY, DeHoog RJ, Feider CL, Bensussan A, Sans M, Krieger A, Badal S, Keating MF, Woody S, Dhingra S, Yu W, Pirko C, Brahmbhatt KA, Buren GV, Fisher WE, Suliburk J, Eberlin LS (2021) Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the masspec pen technology. Proc Natl Acad Sci 118(28):2104411118. https://doi.org/10.1073/pnas.2104411118

Article  CAS  Google Scholar 

Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, Lathouras K, Rosini F, Szasz M, Savage A et al (2020) The intelligent knife (iknife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proc Natl Acad Sci 117(13):7338–7346. https://doi.org/10.1073/pnas.1916960117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santilli AML, Jamzad A, Sedghi A, Kaufmann M, Logan K, Wallis J, Ren KYM, Janssen N, Merchant S, Engel J, McKay D, Varma S, Wang A, Fichtinger G, Rudan JF, Mousavi P (2021) Domain adaptation and self-supervised learning for surgical margin detection. Int J Comput Assist Radiol Surg 16(5):861–869. https://doi.org/10.1007/s11548-021-02381-6

Article  PubMed  Google Scholar 

Seliya N, Abdollah Zadeh A, Khoshgoftaar TM (2021) A literature review on one-class classification and its potential applications in big data. J Big Data 8:122. https://doi.org/10.1186/s40537-021-00514-x

Article  Google Scholar 

Zheng C, Chen S, Wang W, Lu J (2013) Using principal component analysis to solve a class imbalance problem in traffic incident detection. Math Probl Eng 2013(1):524861. https://doi.org/10.1155/2013/524861

Article  Google Scholar 

Yadav K, Aswal US, Saravanan V, Dwivedi SP, Shalini N, Kumar N (2023) Isolation forest anomaly detection in vital sign monitoring for healthcare. In: 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), vol. 1, pp. 1–7. https://doi.org/10.1109/ICAIIHI57871.2023.10488940

Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422. https://doi.org/10.1109/ICDM.2008.17 . IEEE

Alzahrani AA, Alharithi FS (2024) Machine learning approaches for advanced detection of rare genetic disorders in whole-genome sequencing. Alex Eng J 106:582–593. https://doi.org/10.1016/j.aej.2024.08.056

Article  Google Scholar 

Wang J, Cherian A (2019) Gods: Generalized one-class discriminative subspaces for anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8200–8210. https://doi.org/10.1109/ICCV.2019.00829

Cherian A, Wang J (2022) Generalized one-class learning using pairs of complementary classifiers. IEEE Trans Pattern Anal Mach Intell 44(10):6993–7009. https://doi.org/10.1109/TPAMI.2021.3092999

Article  PubMed  Google Scholar 

Tschuchnig ME, Gadermayr M (2022) Anomaly detection in medical imaging-a mini review. In: Data Science–Analytics and Applications: Proceedings of the 4th International Data Science Conference–iDSC2021, pp. 33–38. https://doi.org/10.1007/978-3-658-36295-9_5 . Springer

Hassan MA, Weyers B, Bec J, Qi J, Gui D, Bewley A, Abouyared M, Farwell G, Birkeland A, Marcu L (2023) Flim-based in vivo classification of residual cancer in the surgical cavity during transoral robotic surgery. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-Mahmood T, Taylor R (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, Springer, Cham. pp. 587–596. https://doi.org/10.1007/978-3-031-43996-4_56

Elleuch JF, Mehdi MZ, Belaaj M, Benayed NG, Sellami D, Damak A (2023) Breast cancer anomaly detection based on the possibility theory with a clustering paradigm. Biomed Signal Process Control 79:104043. https://doi.org/10.1016/j.bspc.2022.104043

Article  Google Scholar 

Baur C, Wiestler B, Muehlau M, Zimmer C, Navab N, Albarqouni S (2021) Modeling healthy anatomy with artificial intelligence for unsupervised anomaly detection in brain MRI. Radiol Artif Intell 3(3):190169. https://doi.org/10.1148/ryai.2021190169

Article  Google Scholar 

Zhang J, Xie Y, Pang G, Liao Z, Verjans J, Li W, Sun Z, He J, Li Y, Shen C, Xia Y (2021) Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection. IEEE Trans Med Imaging 40(3):879–890. https://doi.org/10.1109/TMI.2020.3040950

Article  PubMed  Google Scholar 

Michael-Pitschaze T, Cohen N, Ofer D, Hoshen Y, Linial M (2024) Detecting anomalous proteins using deep representations. NAR Genom Bioinf 6(1):021. https://doi.org/10.1093/nargab/lqae021

Article  CAS  Google Scholar 

Comments (0)

No login
gif