Orces CH, Orces J. Trends in the U.S. Childhood emergency department visits for fall-related fractures, 2001–2015. Cureus. 2020 Nov 22
Naranje SM, Erali RA, Warner WC, Sawyer JR, Kelly DM (2016) Epidemiology of pediatric fractures presenting to emergency departments in the United States. J Pediatr Orthop 36(4):e45–e48
Bae DS (2008) Pediatric distal radius and forearm fractures. J Hand Surg Am 33(10):1911–1923
Smith VA, Goodman HJ, Strongwater A, Smith B (2005) Treatment of pediatric both-bone forearm fractures. J Pediatr Orthop 25(3):309–313
Reeder BM, Lyne ED, Patel DR, Cucos DR (2004) Referral patterns to a pediatric orthopedic clinic: implications for education and practice. Pediatrics 113(3):e163–e167
Hsu EY, Schwend RM, Julia L (2012) How many referrals to a pediatric orthopaedic hospital specialty clinic are primary care problems? J Pediatr Orthop 32(7):727–731
Do TT, Strub WM, Foad SL, Mehlman CT, Crawford AH (2003) Reduction versus remodeling in pediatric distal forearm fractures: a preliminary cost analysis. J Pediatr Orthop B 12(2):109–115
Gattu RK, De Fee AS, Lichenstein R, Teshome G (2017) Consideration of cost of care in pediatric emergency transfer—an opportunity for improvement. Pediatr Emerg Care 33(5):334–338
Shelmerdine SC, White RD, Liu H, Arthurs OJ, Sebire NJ (2022) Artificial intelligence for radiological paediatric fracture assessment: a systematic review. Insights Imaging 13(1):94
PubMed PubMed Central Google Scholar
Oppenheimer J, Lüken S, Hamm B, Niehues SM (2023) A prospective approach to integration of ai fracture detection software in radiographs into clinical workflow. Life 13(1):223
PubMed PubMed Central Google Scholar
Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts M, Sauvestre R, Shatkhin M, Gupta A, Chopra S, Kumaravel M, Daluiski A, Plogger W, Nascone J, Potter H, Lindsey R (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):144
PubMed PubMed Central Google Scholar
Nagy E, Janisch M, Hržić F, Sorantin E, Tschauner S (2022) A pediatric wrist trauma X-ray dataset (GRAZPEDWRI-DX) for machine learning. Sci Data 9(1):222
PubMed PubMed Central Google Scholar
Lam VK, Fischer E, Jawad K, Tabaie S, Cleary K, Anwar SM (2024) An automated framework for pediatric hip surveillance and severity assessment using radiographs. Int J Comput Assist Radiol Surg. 20:203–211
Caron M, Touvron H, Misra I, Jegou H, Mairal J, Bojanowski P, Joulin A (2021) Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) [Internet]. IEEE; 2021. p. 9630–40. Available from: https://ieeexplore.ieee.org/document/9709990/
Anwar SM, Parida A, Atito S, Awais M, Nino G, Kittler J, Linguraru M (2024) SS-CXR: self-supervised pretraining using chest x-rays towards a domain specific foundation model. In: 2024 IEEE International Conference on Image Processing (ICIP). IEEE; 2024. p. 2975–81
Atito S, Anwar SM, Awais M, Kittler J (2022) SB-SSL: Slice-Based Self-supervised Transformers for Knee Abnormality Classification from MRI. In: Zamzmi G, Antani S, Bagci U, Linguraru MG, Rajaraman S, Xue Z (eds) Medical Image Learning with Limited and Noisy Data. Springer Nature Switzerland, Cham, pp 86–95
Parida A, Capellan-Martin D, Atito S, Awais M, Ledesma-Carbayo MJ, Linguraru MG, Anwar S (2024) DiCoM--diverse concept modeling towards enhancing generalizability in chest X-ray studies. arXiv preprint https://arxiv.org/abs/2402.15534
Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y, Yang Z, Zhang Y, Tao D (2023) A survey on vision transformer. IEEE Trans Pattern Anal Mach Intell 45(1):87–110
Parvaiz A, Khalid MA, Zafar R, Ameer H, Ali M, Fraz MM (2023) Vision Transformers in medical computer vision—A contemplative retrospection. Eng Appl Artif Intell 122:106126
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint https://arxiv.org/abs/2010.11929
Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball R (2017) Mura: large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint https://arxiv.org/abs/1712.06957
Abedeen I, Rahman MdA, Prottyasha FZ, Ahmed T, Chowdhury TM, Shatabda S (2023) FracAtlas: a dataset for fracture classification, localization and segmentation of musculoskeletal radiographs. Sci Data 10(1):521
PubMed PubMed Central Google Scholar
Felipe Kitamura Eduardo Farina. UNIFESP x-ray body part classifier competition, 2022. [cited 2025 Jan 9]; Available from: https://github.com/piyumaha12/UNIFESP-X-ray-Body-Part-Classifier-Competition/tree/cc654bcae4f9bab7a196b8e543a4e8a27a464b67#1
Skalski P (2022) makesense.ai. GitHub
Zhiqiang W, Jun L (2017) A review of object detection based on convolutional neural network. In: 2017 36th Chinese Control Conference (CCC). IEEE; 2017. p 11104–9
McDermott M, Zhang H, Hansen L, Angelotti G, Gallifant J (2024) A closer look at auroc and auprc under class imbalance. Adv Neural Inf Process Syst 37:44102–44163
Choi J, Cho Y, Lee S, Lee J, Lee S, Choi Y, Cheon J, Ha J (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest Radiol 55(2):101–110
Chung S, Han S, Lee J, Oh K, Kim N, Yoon J, Kim J, Moon S, Kwon J, Lee H, Noh Y, Kim Y (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89(4):468–473
PubMed PubMed Central Google Scholar
Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N (2019) Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 48(2):239–244
Kuo RYL, Harrison C, Curran TA, Jones B, Freethy A, Cussons D, Stewart M, Collins G, Furniss D (2022) Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology 304(1):50–62
Comments (0)