Analyzing pediatric forearm X-rays for fracture analysis using machine learning

Orces CH, Orces J. Trends in the U.S. Childhood emergency department visits for fall-related fractures, 2001–2015. Cureus. 2020 Nov 22

Naranje SM, Erali RA, Warner WC, Sawyer JR, Kelly DM (2016) Epidemiology of pediatric fractures presenting to emergency departments in the United States. J Pediatr Orthop 36(4):e45–e48

PubMed  Google Scholar 

Bae DS (2008) Pediatric distal radius and forearm fractures. J Hand Surg Am 33(10):1911–1923

PubMed  Google Scholar 

Smith VA, Goodman HJ, Strongwater A, Smith B (2005) Treatment of pediatric both-bone forearm fractures. J Pediatr Orthop 25(3):309–313

PubMed  Google Scholar 

Reeder BM, Lyne ED, Patel DR, Cucos DR (2004) Referral patterns to a pediatric orthopedic clinic: implications for education and practice. Pediatrics 113(3):e163–e167

PubMed  Google Scholar 

Hsu EY, Schwend RM, Julia L (2012) How many referrals to a pediatric orthopaedic hospital specialty clinic are primary care problems? J Pediatr Orthop 32(7):727–731

Google Scholar 

Do TT, Strub WM, Foad SL, Mehlman CT, Crawford AH (2003) Reduction versus remodeling in pediatric distal forearm fractures: a preliminary cost analysis. J Pediatr Orthop B 12(2):109–115

PubMed  Google Scholar 

Gattu RK, De Fee AS, Lichenstein R, Teshome G (2017) Consideration of cost of care in pediatric emergency transfer—an opportunity for improvement. Pediatr Emerg Care 33(5):334–338

PubMed  Google Scholar 

Shelmerdine SC, White RD, Liu H, Arthurs OJ, Sebire NJ (2022) Artificial intelligence for radiological paediatric fracture assessment: a systematic review. Insights Imaging 13(1):94

PubMed  PubMed Central  Google Scholar 

Oppenheimer J, Lüken S, Hamm B, Niehues SM (2023) A prospective approach to integration of ai fracture detection software in radiographs into clinical workflow. Life 13(1):223

PubMed  PubMed Central  Google Scholar 

Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts M, Sauvestre R, Shatkhin M, Gupta A, Chopra S, Kumaravel M, Daluiski A, Plogger W, Nascone J, Potter H, Lindsey R (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):144

PubMed  PubMed Central  Google Scholar 

Nagy E, Janisch M, Hržić F, Sorantin E, Tschauner S (2022) A pediatric wrist trauma X-ray dataset (GRAZPEDWRI-DX) for machine learning. Sci Data 9(1):222

PubMed  PubMed Central  Google Scholar 

Lam VK, Fischer E, Jawad K, Tabaie S, Cleary K, Anwar SM (2024) An automated framework for pediatric hip surveillance and severity assessment using radiographs. Int J Comput Assist Radiol Surg. 20:203–211

PubMed  Google Scholar 

Caron M, Touvron H, Misra I, Jegou H, Mairal J, Bojanowski P, Joulin A (2021) Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) [Internet]. IEEE; 2021. p. 9630–40. Available from: https://ieeexplore.ieee.org/document/9709990/

Anwar SM, Parida A, Atito S, Awais M, Nino G, Kittler J, Linguraru M (2024) SS-CXR: self-supervised pretraining using chest x-rays towards a domain specific foundation model. In: 2024 IEEE International Conference on Image Processing (ICIP). IEEE; 2024. p. 2975–81

Atito S, Anwar SM, Awais M, Kittler J (2022) SB-SSL: Slice-Based Self-supervised Transformers for Knee Abnormality Classification from MRI. In: Zamzmi G, Antani S, Bagci U, Linguraru MG, Rajaraman S, Xue Z (eds) Medical Image Learning with Limited and Noisy Data. Springer Nature Switzerland, Cham, pp 86–95

Google Scholar 

Parida A, Capellan-Martin D, Atito S, Awais M, Ledesma-Carbayo MJ, Linguraru MG, Anwar S (2024) DiCoM--diverse concept modeling towards enhancing generalizability in chest X-ray studies. arXiv preprint https://arxiv.org/abs/2402.15534

Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y, Yang Z, Zhang Y, Tao D (2023) A survey on vision transformer. IEEE Trans Pattern Anal Mach Intell 45(1):87–110

PubMed  Google Scholar 

Parvaiz A, Khalid MA, Zafar R, Ameer H, Ali M, Fraz MM (2023) Vision Transformers in medical computer vision—A contemplative retrospection. Eng Appl Artif Intell 122:106126

Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint https://arxiv.org/abs/2010.11929

Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball R (2017) Mura: large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint https://arxiv.org/abs/1712.06957

Abedeen I, Rahman MdA, Prottyasha FZ, Ahmed T, Chowdhury TM, Shatabda S (2023) FracAtlas: a dataset for fracture classification, localization and segmentation of musculoskeletal radiographs. Sci Data 10(1):521

PubMed  PubMed Central  Google Scholar 

Felipe Kitamura Eduardo Farina. UNIFESP x-ray body part classifier competition, 2022. [cited 2025 Jan 9]; Available from: https://github.com/piyumaha12/UNIFESP-X-ray-Body-Part-Classifier-Competition/tree/cc654bcae4f9bab7a196b8e543a4e8a27a464b67#1

Skalski P (2022) makesense.ai. GitHub

Zhiqiang W, Jun L (2017) A review of object detection based on convolutional neural network. In: 2017 36th Chinese Control Conference (CCC). IEEE; 2017. p 11104–9

McDermott M, Zhang H, Hansen L, Angelotti G, Gallifant J (2024) A closer look at auroc and auprc under class imbalance. Adv Neural Inf Process Syst 37:44102–44163

Google Scholar 

Choi J, Cho Y, Lee S, Lee J, Lee S, Choi Y, Cheon J, Ha J (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest Radiol 55(2):101–110

PubMed  Google Scholar 

Chung S, Han S, Lee J, Oh K, Kim N, Yoon J, Kim J, Moon S, Kwon J, Lee H, Noh Y, Kim Y (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89(4):468–473

PubMed  PubMed Central  Google Scholar 

Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N (2019) Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 48(2):239–244

PubMed  Google Scholar 

Kuo RYL, Harrison C, Curran TA, Jones B, Freethy A, Cussons D, Stewart M, Collins G, Furniss D (2022) Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology 304(1):50–62

PubMed  Google Scholar 

Comments (0)

No login
gif