Symmetry Topological Field Theory and Non-Abelian Kramers–Wannier Dualities of Generalised Ising Models

Apruzzi, F., Bonetti, F.: Symmetry TFTs from string theory. Commun. Math. Phys. 402, 895–949 (2023). https://doi.org/10.1007/s00220-023-04737-2

Article  ADS  MathSciNet  Google Scholar 

Aasen, D., Fendley, P., Mong, R.S.K.: Topological Defects on the Lattice: Dualities and Degeneracies, arXiv:2008.08598 [cond-mat.stat-mech]

Aasen, D., Mong, R.S.K., Fendley, P.: Topological Defects on the Lattice I: The Ising model. J. Phys. A 49, 354001 (2016). https://doi.org/10.1088/1751-8113/49/35/354001. arXiv:1601.07185 [cond-mat.stat-mech]

Article  MathSciNet  Google Scholar 

Atiyah, M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175–186 (1989). https://doi.org/10.1007/BF02698547

Article  Google Scholar 

Buerschaper, O., Aguado, M.: Mapping kitaev’s quantum double lattice models to levin and wen’s string-net models, Physical Review B 80, (2009), https://doi.org/10.1103/PhysRevB.80.155136arXiv:0907.2670 [cond-mat.str-el]

Buerschaper, O., Aguado, M., Vidal, G.: Explicit tensor network representation for the ground states of string-net models. Phys. Rev. B 79, 085119 (2009). https://doi.org/10.1103/PhysRevB.79.085119

Article  ADS  Google Scholar 

Bartsch, T., Bullimore, M., Ferrari, A.E.V., Pearson, J.: Non-invertible Symmetries and Higher Representation Theory I, arXiv:2208.05993 [hep-th]

Bartsch, T., Bullimore, M., Grigoletto, A.: Representation theory for categorical symmetries, arXiv:2305.17165 [hep-th]

Bhardwaj, L., Bottini, L.E., Pajer, D., Schafer-Nameki, S.: Categorical Landau Paradigm for Gapped Phases, arXiv:2310.03786 [cond-mat.str-el]

Bhardwaj, L., Bottini, L.E., Schafer-Nameki, S., Tiwari, A.: Non-invertible higher-categorical symmetries. SciPost Phys. 14, 007 (2023). https://doi.org/10.21468/SciPostPhys.14.1.007. arXiv:2204.06564 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Bhardwaj, L., Bottini, L.E., Schafer-Nameki, S., Tiwari, A.: Lattice Models for Phases and Transitions with Non-Invertible Symmetries, arXiv:2405.05964 [cond-mat.str-el]

Bahr, B., Dittrich, B., Ryan, J.P.: Spin foam models with finite groups. J. Grav. 2013, 549824 (2013). https://doi.org/10.1155/2013/549824. arXiv:1103.6264 [gr-qc]

Article  Google Scholar 

Buican, M., Gromov, A.: Anyonic Chains, Topological Defects, and Conformal Field Theory. Commun. Math. Phys. 356, 1017–1056 (2017). https://doi.org/10.1007/s00220-017-2995-6. arXiv:1701.02800 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Bultinck, N., Mariën, M., Williamson, D.J., Şahinoğlu, M.B., Haegeman, J., Verstraete, F.: Anyons and matrix product operator algebras. Annals Phys. 378, 183–233 (2017). https://doi.org/10.1016/j.aop.2017.01.004. arXiv:1511.08090 [cond-mat.str-el]

Article  ADS  MathSciNet  Google Scholar 

Barrett, J.W., Naish-Guzman, I.: The Ponzano-Regge model. Class. Quant. Grav. 26, 155014 (2009). https://doi.org/10.1088/0264-9381/26/15/155014. arXiv:0803.3319 [gr-qc]

Article  ADS  Google Scholar 

Bruguières, A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316, 215–236 (2000). https://doi.org/10.1007/s002080050011

Article  MathSciNet  Google Scholar 

Bhardwaj, L., Schafer-Nameki, S.: Generalized charges, part I: Invertible symmetries and higher representations. SciPost Phys. 16, 093 (2024). https://doi.org/10.21468/SciPostPhys.16.4.093. arXiv:2304.02660 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Bhardwaj, L., Schafer-Nameki, S., Wu, J.: Universal Non-Invertible Symmetries. Fortsch. Phys. 70, 2200143 (2022). https://doi.org/10.1002/prop.202200143. arXiv:2208.05973 [hep-th]

Article  MathSciNet  Google Scholar 

Bhardwaj, L., Tachikawa, Y.: On finite symmetries and their gauging in two dimensions. JHEP 03, 189 (2018). https://doi.org/10.1007/JHEP03(2018)189. arXiv:1704.02330 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Barrett, J.W., Westbury, B.W.: Invariants of piecewise linear three manifolds. Trans. Am. Math. Soc. 348, 3997–4022 (1996). https://doi.org/10.1090/S0002-9947-96-01660-1. arXiv:hep-th/9311155

Article  Google Scholar 

Chang, C.-M., Lin, Y.-H., Shao, S.-H., Wang, Y., Yin, X.: Topological Defect Lines and Renormalization Group Flows in Two Dimensions. JHEP 01, 026 (2019). https://doi.org/10.1007/JHEP01(2019)026. arXiv:1802.04445 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Choi, Y., Sanghavi, Y., Shao, S.-H., Zheng, Y.: Non-invertible and higher-form symmetries in 2+1d lattice gauge theories, arXiv:2405.13105 [cond-mat.str-el]

Chatterjee, A., Wen, X.-G.: Symmetry as a shadow of topological order and a derivation of topological holographic principle. Phys. Rev. B 107, 155136 (2023). https://doi.org/10.1103/PhysRevB.107.155136. arXiv:2203.03596 [cond-mat.str-el]

Article  ADS  Google Scholar 

Şahinoğlu, M.B., Williamson, D., Bultinck, N., Mariën, M., Haegeman, J., Schuch, N., Verstraete, F.: Characterizing Topological Order with Matrix Product Operators. Annales Henri Poincare 22, 563–592 (2021). https://doi.org/10.1007/s00023-020-00992-4. arXiv:1409.2150 [quant-ph]

Article  ADS  MathSciNet  Google Scholar 

Davydov, A.: Centre of an algebra, Advances in Mathematics 225, 319–348 (2010). https://www.sciencedirect.com/science/article/pii/S0001870810000824

Delcamp, C.: Tensor network approach to electromagnetic duality in (3+1)d topological gauge models. JHEP 08, 149 (2022). https://doi.org/10.1007/JHEP08(2022)149. arXiv:2112.08324 [cond-mat.str-el]

Article  ADS  MathSciNet  Google Scholar 

Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. New Ser. 16, 1–119 (2010). https://doi.org/10.1007/s00029-010-0017-z

Article  MathSciNet  Google Scholar 

Diatlyk, O., Luo, C., Wang, Y., Weller, Q.: Gauging non-invertible symmetries: topological interfaces and generalized orbifold groupoid in 2d QFT. JHEP 03, 127 (2024). https://doi.org/10.1007/JHEP03(2024)127. arXiv:2311.17044 [hep-th]

Article  ADS  MathSciNet  Google Scholar 

Delcamp, C., Schuch, N.: On tensor network representations of the (3+1)d toric code. Quantum 5, 604 (2021). https://doi.org/10.22331/q-2021-12-16-604. arXiv:2012.15631 [cond-mat.str-el]

Article  Google Scholar 

Delcamp, C., Tiwari, A.: Higher categorical symmetries and gauging in two-dimensional spin systems, arXiv:2301.01259 [hep-th]

Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393–429 (1990). https://doi.org/10.1007/BF02096988

Article  ADS  MathSciNet  Google Scholar 

Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, vol. 205, American Mathematical Soc., (2016)

Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum topology 1, 209–273 (2010). https://doi.org/10.4171/qt/6

Article  MathSciNet  Google Scholar 

Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Kramers-Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004). https://doi.org/10.1103/PhysRevLett.93.070601. arXiv:cond-mat/0404051

Article  ADS  MathSciNet  Google Scholar 

Frohlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007). https://doi.org/10.1016/j.nuclphysb.2006.11.017. arXiv:hep-th/0607247

Article  ADS  MathSciNet  Google Scholar 

Freed, D.S., Moore, G.W., Teleman, C.: Topological symmetry in quantum field theory, arXiv:2209.07471 [hep-th]

Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: partition functions, Nuclear Physics B 646, 353–497 (2002). https://www.sciencedirect.com/science/article/pii/S0550321302007447

Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators: III: simple currents, Nuclear Physics B 694, 277–353 (2004). https://www.sciencedirect.com/science/article/pii/S0550321304003347

Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators II: unoriented world sheets, Nuclear Physics B 678, 511–637 (2004). https://www.sciencedirect.com/science/article/pii/S0550321303009982

Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators IV:: Structure constants and correlation functions, Nuclear Physics B 715, 539–638 (2005). https://www.sciencedirect.com/science/article/pii/S0550321305002154

Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321, 543–575 (2013). https://doi.org/10.1007/s00220-013-1723-0. arXiv:1203.4568 [hep-th]

Article  ADS 

Comments (0)

No login
gif