Limit Shapes and Fluctuations for $$(GL_{n},GL_{k})$$ Skew Howe Duality

Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989)

MathSciNet  Google Scholar 

Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129, p. 551. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0979-9

Knuth, D.: Permutations, matrices, and generalized Young tableaux. Pac. J. Math. 34(3), 709–727 (1970)

MathSciNet  Google Scholar 

Stanley, R.P.: Enumerative combinatorics. In: Cambridge Studies in Advanced Mathematics, vol. 62, p. 581. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9780511609589

Okounkov, A.: Infinite wedge and random partitions. Selecta Math. (N.S.) 7(1), 57–81 (2001). https://doi.org/10.1007/PL00001398

Article  MathSciNet  Google Scholar 

Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (2003). https://doi.org/10.1090/S0894-0347-03-00425-9

Article  MathSciNet  Google Scholar 

Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn., p. 400. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511626234

Betea, D., Bouttier, J., Walsh, H.: Multicritical Schur measures and higher-order analogues of the Tracy–Widom distribution. Math. Phys. Anal. Geom. 27(1), 2–58 (2024). https://doi.org/10.1007/s11040-023-09472-7

Article  MathSciNet  Google Scholar 

Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

MathSciNet  Google Scholar 

Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999). https://doi.org/10.1090/S0894-0347-99-00307-0

Article  MathSciNet  Google Scholar 

Brézin, E., Hikami, S.: Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57(4), 4140–4149 (1998). https://doi.org/10.1103/PhysRevE.57.4140

Article  MathSciNet  Google Scholar 

Tracy, C.A., Widom, H.: The Pearcey process. Commun. Math. Phys. 263(2), 381–400 (2006). https://doi.org/10.1007/s00220-005-1506-3

Article  MathSciNet  Google Scholar 

Okounkov, A., Reshetikhin, N.: Random skew plane partitions and the Pearcey process. Commun. Math. Phys. 269(3), 571–609 (2007). https://doi.org/10.1007/s00220-006-0128-8

Article  MathSciNet  Google Scholar 

Borodin, A., Olshanski, G.: Asymptotics of Plancherel-type random partitions. J. Algebra 313(1), 40–60 (2007). https://doi.org/10.1016/j.jalgebra.2006.10.039

Article  MathSciNet  Google Scholar 

Gravner, J., Tracy, C.A., Widom, H.: Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys. 102(5–6), 1085–1132 (2001). https://doi.org/10.1023/A:1004879725949

Article  MathSciNet  Google Scholar 

Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011). https://doi.org/10.1007/s11511-011-0061-3

Article  MathSciNet  Google Scholar 

Tao, T., Vu, V.: The Wigner–Dyson–Mehta bulk universality conjecture for Wigner matrices. Electron. J. Probab. 16, 77 (2011). https://doi.org/10.1214/EJP.v16-944

Article  MathSciNet  Google Scholar 

Erdős, L., Krüger, T., Schröder, D.: Cusp universality for random matrices I: local law and the complex Hermitian case. Commun. Math. Phys. 378(2), 1203–1278 (2020). https://doi.org/10.1007/s00220-019-03657-4

Article  MathSciNet  Google Scholar 

Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys. 353(2), 853–903 (2017). https://doi.org/10.1007/s00220-017-2858-1

Article  MathSciNet  Google Scholar 

Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2) 153(1), 259–296 (2001). https://doi.org/10.2307/2661375

Article  MathSciNet  Google Scholar 

Gravner, J., Tracy, C.A., Widom, H.: Fluctuations in the composite regime of a disordered growth model. Commun. Math. Phys. 229, 433–458 (2002)

MathSciNet  Google Scholar 

Gravner, J., Tracy, C.A., Widom, H.: A growth model in a random environment. Ann. Probab. 30, 1340–1368 (2002)

MathSciNet  Google Scholar 

Nazarov, A., Nikitin, P., Sarafannikov, D.: Skew Howe duality and \(q\)-Krawtchouk polynomial ensemble. Zap. Nauchn. Sem. POMI 517, 106–124 (2022)

MathSciNet  Google Scholar 

Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Rel. Fields 123(2), 225–280 (2002). https://doi.org/10.1007/s004400100187

Article  MathSciNet  Google Scholar 

Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., Ramassamy, S.: Dimers on rail yard graphs. Ann. Inst. Henri Poincaré D 4(4), 479–539 (2017). https://doi.org/10.4171/AIHPD/46

Article  MathSciNet  Google Scholar 

Nazarov, A., Postnova, O., Scrimshaw, T.: Skew Howe duality and limit shapes of Young diagrams. J. Lond. Math. Soc. 109(1), 12813 (2024). arXiv:2111.12426

MathSciNet  Google Scholar 

Borodin, A., Olshanski, G.: Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. Math. (2) 161(3), 1319–1422 (2005). https://doi.org/10.4007/annals.2005.161.1319

Article  MathSciNet  Google Scholar 

Borodin, A., Olshanski, G.: Random partitions and the gamma kernel. Adv. Math. 194(1), 141–202 (2005). https://doi.org/10.1016/j.aim.2004.06.003

Article  MathSciNet  Google Scholar 

Borodin, A., Olshanski, G.: Representation theory and random point processes. In: European Congress of Mathematics, European Mathematical Society, Zürich, pp. 73–94 (2005)

Borodin, A., Olshanski, G.: Meixner polynomials and random partitions. Mosc. Math. J. 6(4), 629–655771 (2006). https://doi.org/10.17323/1609-4514-2006-6-4-629-655

Article  MathSciNet  Google Scholar 

Ismail, M., Simeonov, P.: Strong asymptotics for Krawtchouk polynomials. J. Comput. Appl. Math. 100(2), 121–144 (1998). https://doi.org/10.1016/S0377-0427(98)00183-6

Article  MathSciNet  Google Scholar 

Pittel, B., Romik, D.: Limit shapes for random square Young tableaux. Adv. Appl. Math. 38(2), 164–209 (2007). https://doi.org/10.1016/j.aam.2005.12.005

Article  MathSciNet  Google Scholar 

Panova, G., Śniady, P.: Skew Howe duality and random rectangular Young tableaux. Algebr. Combin. 1(1), 81–94 (2018). https://doi.org/10.5802/alco.8

Article  MathSciNet  Google Scholar 

Seppäläinen, T.: Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26(3), 1232–1250 (1998). https://doi.org/10.1214/aop/1022855751

Article  MathSciNet  Google Scholar 

Baik, J., Kriecherbauer, T., McLaughlin, K., Miller, P.D.: Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results. Int. Math. Res. Not. 15, 821–858 (2003). https://doi.org/10.1155/S1073792803212125

Article  MathSciNet  Google Scholar 

Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials. In: Annals of Mathematics Studies, vol. 164, p. 170. Princeton University Press, Princeton, NJ (2007)

Dolivet, Y., Tierz, M.: Chern–Simons matrix models and Stieltjes–Wigert polynomials. J. Math. Phys. 48(2), 1 (2007)

MathSciNet  Google Scholar 

Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc. 13(3), 481–515 (2000). https://doi.org/10.1090/S0894-0347-00-00337-4

Article  MathSciNet  Google Scholar 

Bump, D., Schilling, A.: Crystal Bases, p. 279. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017). https://doi.org/10.1142/9876

Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002). https://www-igm.univ-mlv.fr/berstel/Lothaire/ChapitresACW/

Kimura, T., Zahabi, A.: Universal edge scaling in random partitions. Lett. Math. Phys. 111(2), 48–16 (2021). https://doi.org/10.1007/s11005-021-01389-y

Article  MathSciNet  Google Scholar 

Borodin, A., Okounkov, A.: A Fredholm determinant formula for Toeplitz determinants. Integr. Equ. Oper. Theory 37(4), 386–396 (2000). https://doi.org/10.1007/BF01192827

Article  MathSciNet 

Comments (0)

No login
gif