Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V, Report AOP (2024) Development of an adverse outcome pathway for deposition of energy leading to bone loss. Environ Mol Mutagen 65(Suppl 3):85–111. https://doi.org/10.1002/em.22631
Article CAS PubMed Google Scholar
Wang B, Vashishth D (2023) Advanced glycation and glycoxidation end products in bone. Bone 176:116880. https://doi.org/10.1016/j.bone.2023.116880
Article CAS PubMed PubMed Central Google Scholar
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ (2018) Contributions of material properties and structure to increased bone fragility for a given bone mass in the UCD-T2DM rat model of type 2 diabetes. J Bone Miner Res 33(6):1066–1075. https://doi.org/10.1002/jbmr.3393
Article CAS PubMed Google Scholar
Ganeko K, Masaki C, Shibata Y, Mukaibo T, Kondo Y, Nakamoto T, Miyazaki T, Hosokawa R (2015) Bone aging by advanced glycation end products: a multiscale mechanical analysis. J Dent Res 94(12):1684–1690. https://doi.org/10.1177/0022034515602214
Article CAS PubMed Google Scholar
Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201. https://doi.org/10.1016/s8756-3282(00)00434-8
Article CAS PubMed Google Scholar
Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M, Vashishth D (2015) A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater 52:120–130. https://doi.org/10.1016/j.jmbbm.2015.08.012
Article CAS PubMed PubMed Central Google Scholar
Illien-Jünger S, Palacio-Mancheno P, Kindschuh WF, Chen X, Sroga GE, Vashishth D, Iatridis JC (2018) Dietary advanced glycation end products have sex- and age-dependent effects on vertebral bone microstructure and mechanical function in mice. J Bone Miner Res 33(3):437–448. https://doi.org/10.1002/jbmr.3321
Article CAS PubMed Google Scholar
Liu CJ, Yang X, Wang SH, Wu XT, Mao Y, Shi JW, Fan YB, Sun LW (2023) Preventing disused bone loss through inhibition of advanced glycation end products. Int J Mol Sci 24(5):4953. https://doi.org/10.3390/ijms24054953
Article CAS PubMed PubMed Central Google Scholar
Suzuki R, Fujiwara Y, Saito M, Arakawa S, Shirakawa JI, Yamanaka M, Komohara Y, Marumo K, Nagai R (2020) Intracellular accumulation of advanced glycation end products induces osteoblast apoptosis via endoplasmic reticulum stress. J Bone Miner Res 35(10):1992–2003. https://doi.org/10.1002/jbmr.4053
Article CAS PubMed Google Scholar
Yang X, Gandhi C, Rahman MM, Appleford M, Sun LW, Wang X (2015) Age-related effects of advanced glycation end products (ages) in bone matrix on osteoclastic resorption. Calcif Tissue Int 97(6):592–601. https://doi.org/10.1007/s00223-015-0042-1
Article CAS PubMed Google Scholar
Li Z, Li C, Zhou Y, Chen W, Luo G, Zhang Z, Wang H, Zhang Y, Xu D, Sheng P (2016) Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am J Physiol Endocrinol Metab 310(5):E355–E366. https://doi.org/10.1152/ajpendo.00309.2015
Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53(10):576–580. https://doi.org/10.1016/j.patbio.2004.12.005
Article CAS PubMed Google Scholar
Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Osteocyte calcium signaling response to bone matrix deformation. J Biomech 42(15):2507–2512. https://doi.org/10.1016/j.jbiomech.2009.07.006
Zhang C, Wei W, Chi M, Wan Y, Li X, Qi M, Zhou Y (2019) FOXO1 mediates advanced glycation end products induced mouse osteocyte-like MLO-Y4 cell apoptosis and dysfunctions. J Diabetes Res 2019:6757428. https://doi.org/10.1155/2019/6757428
Article CAS PubMed PubMed Central Google Scholar
Yang X, Liu CJ, Wang ZZ, Ding D, Shi JW, Wu XT, Sun LW, Fan YB (2021) Effects of advanced glycation end products on osteocytes mechanosensitivity. Biochem Biophys Res Commun 568:151–157. https://doi.org/10.1016/j.bbrc.2021.06.074
Article CAS PubMed Google Scholar
Tanaka-Kamioka K, Kamioka H, Ris H, Lim SS (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 13(10):1555–1568. https://doi.org/10.1359/jbmr.1998.13.10.1555
Article CAS PubMed Google Scholar
Wang Y, McNamara† LM, Schaffler† MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104(40):15941–15946
Article CAS PubMed PubMed Central Google Scholar
Cabahug-Zuckerman P, Stout RF Jr, Majeska RJ, Thi MM, Spray DC, Weinbaum S, Schaffler MB (2018) Potential role for a specialized beta(3) integrin-based structure on osteocyte processes in bone mechanosensation. J Orthop Res 36(2):642–652. https://doi.org/10.1002/jor.23792
Article CAS PubMed Google Scholar
McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken) 292(3):355–363. https://doi.org/10.1002/ar.20869
Article CAS PubMed Google Scholar
Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ, Sankar U, Hum JM, Bix G, Wu D, Robling AG, Sardar R, Farach-Carson MC, Thompson WR (2022) Gabapentin disrupts binding of Perlecan to the α(2)δ(1) voltage sensitive calcium channel subunit and impairs skeletal mechanosensation. Biomolecules 12(12):1857. https://doi.org/10.3390/biom12121857
Article CAS PubMed PubMed Central Google Scholar
Hu M, Tian GW, Gibbons DE, Jiao J, Qin YX (2015) Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys 579:55–61. https://doi.org/10.1016/j.abb.2015.05.012
Article CAS PubMed PubMed Central Google Scholar
Prasadam I, Farnaghi S, Feng JQ, Gu W, Perry S, Crawford R, Xiao Y (2013) Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrinβ1 and focal adhesion kinase signaling cues. Arthritis Res Ther 15(5):R150. https://doi.org/10.1186/ar4333
Article CAS PubMed PubMed Central Google Scholar
Zhang D, Zhou C, Wang Q, Cai L, Du W, Li X, Zhou X, Xie J (2018) Extracellular matrix elasticity regulates osteocyte gap junction elongation: involvement of paxillin in intracellular signal transduction. Cell Physiol Biochem 51(3):1013–1026. https://doi.org/10.1159/000495482
Article CAS PubMed Google Scholar
Karim L, Tang SY, Sroga GE, Vashishth D (2013) Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int 24(9):2441–2447. https://doi.org/10.1007/s00198-013-2319-4
Article CAS PubMed PubMed Central Google Scholar
Viguet-Carrin S, Gineyts E, Bertholon C, Delmas PD (2009) Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 877(1–2):1–7. https://doi.org/10.1016/j.jchromb.2008.10.043
Article CAS PubMed Google Scholar
Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus. J Mater Res 7(6):1564–1583
Comments (0)