Bone Mineral Density During Treatment with The Janus Kinase Inhibitor Baricitinib in Patients with Rheumatoid Arthritis: A Monocentric Observational Study

Albrecht K, Binder S, Minden K et al (2023) Systematisches Review zur Schätzung der Prävalenz entzündlich rheumatischer Erkrankungen in Deutschland. Z Rheumatol 82:727–738. https://doi.org/10.1007/s00393-022-01305-2

Article  PubMed  PubMed Central  Google Scholar 

Moshayedi S, Tasorian B, Almasi-Hashiani A (2022) The prevalence of osteoporosis in rheumatoid arthritis patient: a systematic review and meta-analysis. Sci Rep 12:15844. https://doi.org/10.1038/s41598-022-20016-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdulkhaliq A, Cheikh M, Almuntashri F et al (2021) A comparison of demographics, disease activity, disability, and treatment among rheumatoid arthritis patients with and without osteoporosis. Open Access Rheumatol 13:275–283. https://doi.org/10.2147/OARRR.S318810

Article  PubMed  PubMed Central  Google Scholar 

Kanis JA, Norton N, Harvey NC et al (2021) SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos 16:82. https://doi.org/10.1007/s11657-020-00871-9

Article  PubMed  PubMed Central  Google Scholar 

Ensrud KE, Crandall CJ (2017) Osteoporosis. Ann Intern Med 167:ICT17. https://doi.org/10.7326/AITC201708010

Article  Google Scholar 

Edwards CJ, Williams E (2010) The role of interleukin-6 in rheumatoid arthritis-associated osteoporosis. Osteoporos Int 21:1287–1293. https://doi.org/10.1007/s00198-010-1192-7

Article  CAS  PubMed  Google Scholar 

Zhao B (2017) TNF and bone remodeling. Curr Osteoporos Rep 15:126–134. https://doi.org/10.1007/s11914-017-0358-z

Article  PubMed  PubMed Central  Google Scholar 

Bakker AD, da Silva VC, Krishnan R et al (2009) Tumor necrosis factor α and interleukin-1β modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum 60:3336–3345. https://doi.org/10.1002/art.24920

Article  CAS  PubMed  Google Scholar 

Zerbini CAF, Clark P, Mendez-Sanchez L et al (2017) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int 28:429–446. https://doi.org/10.1007/s00198-016-3769-2

Article  CAS  PubMed  Google Scholar 

Hauser B, Raterman H, Ralston SH, Lems WF (2022) The effect of anti-rheumatic drugs on the skeleton. Calcif Tissue Int 111:445–456. https://doi.org/10.1007/s00223-022-01001-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komagamine M, Komatsu N, Ling R et al (2023) Effect of JAK inhibitors on the three forms of bone damage in autoimmune arthritis: joint erosion, periarticular osteopenia, and systemic bone loss. Inflamm Regen 43:44. https://doi.org/10.1186/s41232-023-00293-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Liang J, Wu L et al (2022) CYT387, a JAK-specific inhibitor impedes osteoclast activity and oophorectomy-induced osteoporosis via modulating RANKL and ROS signaling pathways. Front Pharmacol. https://doi.org/10.3389/fphar.2022.829862

Article  PubMed  PubMed Central  Google Scholar 

Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079. https://doi.org/10.1038/nm.4385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murakami K, Kobayashi Y, Uehara S et al (2017) A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 12:e0181126. https://doi.org/10.1371/journal.pone.0181126

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Xu L, Jian L et al (2018) Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol 58:136–144. https://doi.org/10.1016/j.intimp.2018.03.021

Article  CAS  PubMed  Google Scholar 

Genovese MC, Kalunian K, Gottenberg J-E et al (2019) Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy. JAMA 322:315. https://doi.org/10.1001/jama.2019.9055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubbert-Roth A, Enejosa J, Pangan AL et al (2020) Trial of upadacitinib or abatacept in rheumatoid arthritis. N Engl J Med 383:1511–1521. https://doi.org/10.1056/NEJMoa2008250

Article  CAS  PubMed  Google Scholar 

Lee EB, Fleischmann R, Hall S et al (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370:2377–2386. https://doi.org/10.1056/NEJMoa1310476

Article  CAS  PubMed  Google Scholar 

Taylor PC, Keystone EC, van der Heijde D et al (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376:652–662. https://doi.org/10.1056/NEJMoa1608345

Article  CAS  PubMed  Google Scholar 

Kay J, Upchurch KS (2012) ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology 51:5–9. https://doi.org/10.1093/rheumatology/kes279

Article  Google Scholar 

(1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650. https://doi.org/10.1016/0002-9343(93)90218-E

Anderson JK, Zimmerman L, Caplan L, Michaud K (2011) Measures of rheumatoid arthritis disease activity: Patient (PtGA) and Provider (PrGA) Global Assessment of Disease Activity, Disease Activity Score (DAS) and Disease Activity Score With 28‐Joint Counts (DAS28), Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), Patient Activity Score (PAS) and Patient Activity Score‐II (PASII), Routine Assessment of Patient Index Data (RAPID), Rheumatoid Arthritis Disease Activity Index (RADAI) and Rheumatoid Arthritis. Arthritis Care Res (Hoboken). https://doi.org/10.1002/acr.20621

Article  PubMed  Google Scholar 

Cvijetić S, Koršić M (2004) Apparent bone mineral density estimated from DXA in healthy men and women. Osteoporos Int 15:295–300. https://doi.org/10.1007/s00198-003-1525-x

Article  PubMed  Google Scholar 

Huang H, Wang Y, Xie W et al (2022) Impact of treat-to-target therapy on bone mineral density loss in patients with rheumatoid arthritis: a prospective cohort study. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2022.867610

Article  PubMed  PubMed Central  Google Scholar 

Cosman F, Lewiecki EM, Eastell R et al (2024) Goal-directed osteoporosis treatment: ASBMR/BHOF task force position statement 2024. J Bone Miner Res 39:1393–1405. https://doi.org/10.1093/jbmr/zjae119

Article  PubMed  PubMed Central  Google Scholar 

Link TM, Majumdar S, Lin JC et al (1998) A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 13:122–132. https://doi.org/10.1359/jbmr.1998.13.1.122

Article  CAS  PubMed  Google Scholar 

Simon D, Minopoulou I, Kemenes S et al (2023) Baricitinib improves bone properties and biomechanics in patients with rheumatoid arthritis: results of the prospective interventional <scp>BARE BONE</scp> trial. Arthritis Rheumatol 75:1923–1934. https://doi.org/10.1002/art.42617

Article  PubMed  Google Scholar 

Adami G, Orsolini G, Rossini M et al (2024) Effects of tofacitinib on bone turnover markers and bone modulators in patients with rheumatoid arthritis. BMC Rheumatol 8:40. https://doi.org/10.1186/s41927-024-00414-6

Article  PubMed  PubMed Central  Google Scholar 

Hamar A, Szekanecz Z, Pusztai A et al (2021) Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos Int 32:1621–1629. https://doi.org/10.1007/s00198-021-05871-0

Article  CAS  PubMed

Comments (0)

No login
gif