Current Treatment Modalities for Urea Cycle Disorders

Lichter-Konecki U, Sanz JH, McCarter R, Urea Cycle Disorders Consortium. Relationship between longitudinal changes in neuropsychological outcome and disease biomarkers in urea cycle disorders. Pediatr Res. 2023;94(6):2005–15.

Article  PubMed  Google Scholar 

Lichter-Konecki U, Mangin JM, Gordish-Dressman H, Hoffman EP, Gallo V. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia. 2008;56(4):365–77.

Article  PubMed  PubMed Central  Google Scholar 

Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med. 2007;356(22):2282–92.

Article  PubMed  CAS  Google Scholar 

Batshaw ML, MacArthur RB, Tuchman M. Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr. 2001;138(1 Suppl):S46–55.

Article  PubMed  CAS  Google Scholar 

Ah Mew N, McCarter R, Daikhin Y, Lichter-Konecki U, Nissim I, Yudkoff M, et al. Augmenting ureagenesis in patients with partial carbamyl phosphate synthetase 1 deficiency with N-carbamyl-L-glutamate. J Pediatr. 2014;165(2):401-3.e3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lichter-Konecki U, Caldovic L, Morizono H, Simpson K, Ah Mew N, MacLeod E, et al. Ornithine transcarbamylase deficiency. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews®. Seattle: University of Washington; 1993.

Google Scholar 

Sen K, Izem R, Long Y, Jiang J, Konczal LL, McCarter RJ, et al. Are asymptomatic carriers of OTC deficiency always asymptomatic? A multicentric retrospective study of risk using the UCDC longitudinal study database. Mol Genet Genomic Med. 2024;12(4):e2443.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Haberle J. Citrin deficiency: the east-side story. J Inherit Metab Dis. 2024;47(6):1129–33.

Article  PubMed  PubMed Central  Google Scholar 

Kido J, Haberle J, Sugawara K, Tanaka T, Nagao M, Sawada T, et al. Clinical manifestation and long-term outcome of citrin deficiency: report from a nationwide study in Japan. J Inherit Metab Dis. 2022;45(3):431–44.

Article  PubMed  CAS  Google Scholar 

Saheki T, Moriyama M, Funahashi A, Kuroda E. AGC2 (citrin) deficiency-from recognition of the disease till construction of therapeutic procedures. Biomolecules. 2020;10(8):1100. https://doi.org/10.3390/biom10081100.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nagamani SCS, Shchelochkov OA, Mullins MA, Carter S, Lanpher BC, Sun Q, et al. A randomized controlled trial to evaluate the effects of high-dose versus low-dose of arginine therapy on hepatic function tests in argininosuccinic aciduria. Mol Genet Metab. 2012;107(3):315–21.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nagamani SCS, Campeau PM, Shchelochkov OA, Premkumar MH, Guse K, Brunetti-Pierri N, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burlina A, Ardissone A, Battini R, Burlina A, Gasperini S, Pession A, et al. Arginase 1 deficiency: a treatable form of spastic paraplegia. Neurol Sci. 2025;46(9):4219–28.

Article  PubMed  PubMed Central  Google Scholar 

Meera P, Uusi-Oukari M, Wallner M, Lipshutz GS. Guanidinoacetate (GAA) is a potent GABA(A) receptor GABA mimetic: implications for neurological disease pathology. J Neurochem. 2023;165(3):445–54.

Article  PubMed  CAS  Google Scholar 

Panza E, Martinelli D, Magini P, Dionisi Vici C, Seri M. Hereditary spastic paraplegia is a common phenotypic finding in ARG1 deficiency, P5CS deficiency and HHH syndrome: three inborn errors of metabolism caused by alteration of an interconnected pathway of glutamate and urea cycle metabolism. Front Neurol. 2019;10:131.

Article  PubMed  PubMed Central  Google Scholar 

Haberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis. 2019;42(6):1192–230.

Article  PubMed  Google Scholar 

Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML, et al. Urea cycle disorders overview. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews®. Seattle: University of Washington; 1993.

Google Scholar 

Watson MS, Lloyd-Puryear MA, Howell RR. The progress and future of US newborn screening. Int J Neonatal Screen. 2022;8(3):41. https://doi.org/10.3390/ijns8030041.

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Sharma R, Feigenbaum A, Lee C, Sahai I, Sanchez Russo R, et al. Arginine to ornithine ratio as a diagnostic marker in patients with positive newborn screening for hyperargininemia. Mol Genet Metab Rep. 2021;27:100735.

PubMed  PubMed Central  CAS  Google Scholar 

Vasquez-Loarte T, Thompson JD, Merritt JL. Considering proximal urea cycle disorders in expanded newborn screening. Int J Neonatal Screen. 2020;6(4):77.

Article  PubMed  PubMed Central  Google Scholar 

Macleod E. Nutrition management of urea cycle disorder. In: Bernstein LE, Rohr F, van Calcar S, editors. Nutrition management of inherited metabolic diseases: lessons from metabolic university. 2nd ed. Springer; 2022. p. 225–40. https://doi.org/10.1007/978-3-030-94510-7.

Chapter  Google Scholar 

Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis. 2021;44(1):110–7.

Article  PubMed  CAS  Google Scholar 

Lewis HB. Studies in the synthesis of hippuric acid in the animal organism. J Biol Chem. 1914;17:225–31.

Article  Google Scholar 

Sherwin CP, Sellers-Kennard K. Toxicity of phenylacetic acid. J Biol Chem. 1919;17:259–64.

Article  Google Scholar 

Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med. 1984;310(23):1500–5.

Article  PubMed  CAS  Google Scholar 

Herder M. Orphan drug incentives in the pharmacogenomic context: policy responses in the USA and Canada. J Law Biosci. 2016;3(1):158–66.

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann GF, Nyhan WL, Zschocke J, Kahler SG, Mayatepek E. Inherited metabolic disorders. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 435.

Google Scholar 

Thibault A, Samid D, Cooper MR, Figg WD, Tompkins AC, Patronas N, et al. Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer. 1995;75(12):2932–8.

Article  PubMed  CAS  Google Scholar 

Thibault A, Cooper MR, Figg WD, Venzon DJ, Sartor AO, Tompkins AC, et al. A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res. 1994;54(7):1690–4.

PubMed  CAS  Google Scholar 

Praphanphoj V, Boyadjiev SA, Waber LJ, Brusilow SW, Geraghty MT. Three cases of intravenous sodium benzoate and sodium phenylacetate toxicity occurring in the treatment of acute hyperammonaemia. J Inherit Metab Dis. 2000;23(2):129–36.

Article  PubMed  CAS  Google Scholar 

McGuire BM, Zupanets IA, Lowe ME, Xiao X, Syplyviy VA, Monteleone J, et al. Pharmacology and safety of glycerol phenylbutyrate in healthy adults and adults with cirrhosis. Hepatology. 2010;51(6):2077–85.

Article  PubMed  CAS  Google Scholar 

Berry SA, Vockley J, Vinks AA, Dong M, Diaz GA, McCandless SE, et al. Pharmacokinetics of glycerol phenylbutyrate in pediatric patients 2 months to 2 years of age with urea cycle disorders. Mol Genet Metab. 2018;125(3):251–7.

Article  PubMed  CAS  Google Scholar 

Mokhtarani M, Diaz GA, Rhead W, Berry SA, Lichter-Konecki U, Feigenbaum A, et al. Elevated phenylacetic acid levels do not correlate with adverse events in patients with urea cycle disorders or hepatic encephalopathy and can be predicted based on t

Comments (0)

No login
gif