Rolipram prevents detrusor underactivity related to pelvic nerve injury in rats by promoting regeneration of nerve axons

Bosch JL, Norton P, Jones JS (2012) Should we screen for and treat lower urinary tract dysfunction after major pelvic surgery? ICI-RS 2011. Neurourol Urodyn 31:327–329

Article  PubMed  Google Scholar 

Siemionow M, Brzezicki G (2009) Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172

Article  CAS  PubMed  Google Scholar 

Snider WD, Zhou FQ, Zhong J, Markus A (2002) Signaling the pathway to regeneration. Neuron 35:13–16

Article  CAS  PubMed  Google Scholar 

Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34:885–893

Article  CAS  PubMed  Google Scholar 

Akram R, Anwar H, Javed MS, Rasul A, Imran A, Malik SA et al (2022) Axonal regeneration: underlying molecular mechanisms and potential therapeutic targets. Biomedicines. https://doi.org/10.3390/biomedicines10123186

Article  PubMed  PubMed Central  Google Scholar 

Takaoka EI, Kurobe M, Okada H, Takai S, Suzuki T, Shimizu N et al (2018) Effect of TRPV4 activation in a rat model of detrusor underactivity induced by bilateral pelvic nerve crush injury. Neurourol Urodyn 37:2527–2534

Article  CAS  PubMed  Google Scholar 

Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M, Patel M et al (2012) The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS ONE 7:e43634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akaihata H, Hata J, Tanji R, Honda-Takinami R, Matsuoka K, Sato Y et al (2020) Tetrahydrobiopterin prevents chronic ischemia-related lower urinary tract dysfunction through the maintenance of nitric oxide bioavailability. Sci Rep 10:19844

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akaihata H, Matsuoka K, Hata J, Harigane Y, Yaginuma K, Endo Y et al (2023) Involvement of mast-cell-tryptase- and protease-activated receptor 2-mediated signaling and urothelial barrier dysfunction with reduced Uroplakin II expression in bladder hyperactivity induced by chronic bladder ischemia in the rat. Int J Mol Sci. https://doi.org/10.3390/ijms24043982

Article  PubMed  PubMed Central  Google Scholar 

Korhonen R, Hömmö T, Keränen T, Laavola M, Hämäläinen M, Vuolteenaho K et al (2013) Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1. Br J Pharmacol 169:1525–1536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panneman EL, Coric D, Tran LMD, de Vries-Knoppert W, Petzold A (2019) Progression of anterograde trans-synaptic degeneration in the human retina is modulated by axonal convergence and divergence. Neuro-Ophthalmology 43:382–390

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thanos S, Thiel HJ (1991) Mechanisms governing neuronal degeneration and axonal regeneration in the mature retinofugal system. J Cell Sci Suppl 15:125–134

Article  CAS  PubMed  Google Scholar 

Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT (2004) The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 101:8786–8790

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa LM, Pereira JE, Filipe VM, Magalhães LG, Couto PA, Gonzalo-Orden JM et al (2013) Rolipram promotes functional recovery after contusive thoracic spinal cord injury in rats. Behav Brain Res 243:66–73

Article  CAS  PubMed  Google Scholar 

Udina E, Ladak A, Furey M, Brushart T, Tyreman N, Gordon T (2010) Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp Neurol 223:143–152

Article  CAS  PubMed  Google Scholar 

Chato-Astrain J, Roda O, Sanchez-Porras D, Miralles E, Alaminos M, Campos F et al (2023) Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord. Neural Regen Res 18:1852–1856

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif