Hartley, H. Origin of the word 'protein'. Nature 168, 244 (1951).
Fruton, J. S. Contrasts in scientific style. Emil Fischer and Franz Hofmeister: Their research groups and their theory of protein structure. Proc. Am. Philos. Soc. 129, 313–370 (1985).
Chick, H. On the “heat coagulation” of proteins. J. Physiol. 40, 404–430 (1910).
Article CAS PubMed PubMed Central Google Scholar
Anson, M. L. & Mirsky, A. E. On some general properties of proteins. J. Gen. Physiol. 9, 169–179 (1925).
Article CAS PubMed PubMed Central Google Scholar
Wu, H. Studies on denaturation of proteins. XIII. A theory of denaturation. 1931. Adv. Protein Chem. 46, 6–26 (1995). discussion 21-25.
Article CAS PubMed Google Scholar
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951).
Article CAS PubMed PubMed Central Google Scholar
Sanger, F. & Thompson, E. O. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J. 53, 353–366 (1953).
Article CAS PubMed PubMed Central Google Scholar
Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958).
Article CAS PubMed Google Scholar
Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960).
Article CAS PubMed Google Scholar
Anfinsen, C. B., Haber, E., Sela, M. & White, F. H. Jr The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 47, 1309–1314 (1961).
Article CAS PubMed PubMed Central Google Scholar
Levinthal, C. How to fold graciously. Mossbauer Spectrosc. Biol. Syst. 67, 22–24 (1969).
Ptitsyn, O. B. Stages in the mechanism of self-organization of protein molecules. Dokl. Akad. Nauk SSSR 210, 1213–1215 (1973).
Lee, S. Y., Karplus, M., Bashford, D. & Weaver, D. Brownian dynamics simulation of protein folding: a study of the diffusion-collision model. Biopolymers 26, 481–506 (1987).
Article CAS PubMed Google Scholar
Karplus, M. & Weaver, D. L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650–668 (1994).
Article CAS PubMed PubMed Central Google Scholar
Wuthrich, K. NMR - this other method for protein and nucleic acid structure determination. Acta Crystallogr D. Biol. Crystallogr 51, 249–270 (1995).
Article CAS PubMed Google Scholar
Fersht, A. R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).
Article CAS PubMed PubMed Central Google Scholar
Itzhaki, L. S., Otzen, D. E. & Fersht, A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).
Article CAS PubMed Google Scholar
Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21, 167–195 (1995).
Article CAS PubMed Google Scholar
Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu Rev. Phys. Chem. 48, 545–600 (1997).
Article CAS PubMed Google Scholar
Rollins, G. C. & Dill, K. A. General mechanism of two-state protein folding kinetics. J. Am. Chem. Soc. 136, 11420–11427 (2014).
Article CAS PubMed PubMed Central Google Scholar
Maity, H. et al. Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 102, 4741–4746 (2005).
Article CAS PubMed PubMed Central Google Scholar
Fink, A. L. Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449 (1999).
Article CAS PubMed Google Scholar
Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571–573 (1962).
Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R. & Kaiser, A. D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 45–60 (1973).
Article CAS PubMed Google Scholar
Barraclough, R. & Ellis, R. J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys. Acta 608, 19–31 (1980).
Article CAS PubMed Google Scholar
Laskey, R. A., Honda, B. M., Mills, A. D. & Finch, J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275, 416–420 (1978).
Article CAS PubMed Google Scholar
Ellis, J. Proteins as molecular chaperones. Nature 328, 378–379 (1987).
Article CAS PubMed Google Scholar
Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).
Article CAS PubMed Google Scholar
Schwalbe, H. et al. The future of integrated structural biology. Structure 32, 1563–1580 (2024).
Article CAS PubMed Google Scholar
Chen, Y. H., Yang, J. T. & Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131 (1972).
Article CAS PubMed Google Scholar
Miles, A. J. & Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 45, 4859–4872 (2016).
Article CAS PubMed Google Scholar
Kuwajima, K. et al. Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 221, 115–118 (1987).
Article CAS PubMed Google Scholar
Lerner, E. et al. Toward dynamic structural biology: Two decades of single-molecule Forster resonance energy transfer. Science 359, eaan1133 (2018).
Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
Comments (0)