Navigating the landscape of protein folding and proteostasis: from molecular chaperones to therapeutic innovations

Hartley, H. Origin of the word 'protein'. Nature 168, 244 (1951).

Fruton, J. S. Contrasts in scientific style. Emil Fischer and Franz Hofmeister: Their research groups and their theory of protein structure. Proc. Am. Philos. Soc. 129, 313–370 (1985).

CAS  PubMed  Google Scholar 

Chick, H. On the “heat coagulation” of proteins. J. Physiol. 40, 404–430 (1910).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anson, M. L. & Mirsky, A. E. On some general properties of proteins. J. Gen. Physiol. 9, 169–179 (1925).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, H. Studies on denaturation of proteins. XIII. A theory of denaturation. 1931. Adv. Protein Chem. 46, 6–26 (1995). discussion 21-25.

Article  CAS  PubMed  Google Scholar 

Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanger, F. & Thompson, E. O. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J. 53, 353–366 (1953).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958).

Article  CAS  PubMed  Google Scholar 

Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960).

Article  CAS  PubMed  Google Scholar 

Anfinsen, C. B., Haber, E., Sela, M. & White, F. H. Jr The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 47, 1309–1314 (1961).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levinthal, C. How to fold graciously. Mossbauer Spectrosc. Biol. Syst. 67, 22–24 (1969).

Google Scholar 

Ptitsyn, O. B. Stages in the mechanism of self-organization of protein molecules. Dokl. Akad. Nauk SSSR 210, 1213–1215 (1973).

CAS  PubMed  Google Scholar 

Lee, S. Y., Karplus, M., Bashford, D. & Weaver, D. Brownian dynamics simulation of protein folding: a study of the diffusion-collision model. Biopolymers 26, 481–506 (1987).

Article  CAS  PubMed  Google Scholar 

Karplus, M. & Weaver, D. L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650–668 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wuthrich, K. NMR - this other method for protein and nucleic acid structure determination. Acta Crystallogr D. Biol. Crystallogr 51, 249–270 (1995).

Article  CAS  PubMed  Google Scholar 

Fersht, A. R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itzhaki, L. S., Otzen, D. E. & Fersht, A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).

Article  CAS  PubMed  Google Scholar 

Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21, 167–195 (1995).

Article  CAS  PubMed  Google Scholar 

Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu Rev. Phys. Chem. 48, 545–600 (1997).

Article  CAS  PubMed  Google Scholar 

Rollins, G. C. & Dill, K. A. General mechanism of two-state protein folding kinetics. J. Am. Chem. Soc. 136, 11420–11427 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maity, H. et al. Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 102, 4741–4746 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fink, A. L. Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449 (1999).

Article  CAS  PubMed  Google Scholar 

Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571–573 (1962).

Article  CAS  Google Scholar 

Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R. & Kaiser, A. D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 45–60 (1973).

Article  CAS  PubMed  Google Scholar 

Barraclough, R. & Ellis, R. J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys. Acta 608, 19–31 (1980).

Article  CAS  PubMed  Google Scholar 

Laskey, R. A., Honda, B. M., Mills, A. D. & Finch, J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275, 416–420 (1978).

Article  CAS  PubMed  Google Scholar 

Ellis, J. Proteins as molecular chaperones. Nature 328, 378–379 (1987).

Article  CAS  PubMed  Google Scholar 

Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

Article  CAS  PubMed  Google Scholar 

Schwalbe, H. et al. The future of integrated structural biology. Structure 32, 1563–1580 (2024).

Article  CAS  PubMed  Google Scholar 

Chen, Y. H., Yang, J. T. & Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131 (1972).

Article  CAS  PubMed  Google Scholar 

Miles, A. J. & Wallace, B. A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 45, 4859–4872 (2016).

Article  CAS  PubMed  Google Scholar 

Kuwajima, K. et al. Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 221, 115–118 (1987).

Article  CAS  PubMed  Google Scholar 

Lerner, E. et al. Toward dynamic structural biology: Two decades of single-molecule Forster resonance energy transfer. Science 359, eaan1133 (2018).

Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).

Article 

Comments (0)

No login
gif