Evaluation of artificial intelligence-based patient education models for irritable bowel syndrome

Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016;S0016–5085(16):00223–7.

Enck P, Aziz Q, Barbara G, et al. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;24:16014.

Ghoshal UC, Abraham P, Bhatia SJ, et al. Comparison of Manning, Rome I, II, and III, and Asian diagnostic criteria: report of the Multicentric Indian Irritable Bowel Syndrome (MIIBS) study. Indian J Gastroenterol. 2013;32:369–75.

von dem Knesebeck O, Löwe B, Lüdecke D, Bobardt JS, Barbek R. Public knowledge and beliefs about the irritable bowel syndrome – results from the SOMA.SOC study. BMC Public Health. 2024;24:219.

Sabaté JM, Ducrotté P, Piche T, et al. Expectations of IBS patients concerning disease and healthcare providers: results of a prospective survey among members of a French patients’ association. Clin Res Hepatol Gastroenterol. 2020;44:961–7.

Halpert A. Irritable bowel syndrome: patient-provider interaction and patient education. J Clin Med. 2018;7:3.

Jayaraman T, Wong RK, Drossman DA, Lee YY. Communication breakdown between physicians and IBS sufferers: what is the conundrum and how to overcome it? J R Coll Physicians Edinb. 2017;47:138–41.

Diaz JA, Griffith RA, Ng JJ, et al. Patients’ use of the internet for medical information. J Gen Intern Med. 2002;17:180–5.

Li X, Chen K, Jia Y, et al. Assessment of medical information on irritable bowel syndrome information in Wikipedia and Baidu Encyclopedia: comparative study. PeerJ. 2024;12: e17264.

Article  PubMed  PubMed Central  Google Scholar 

Levine L, Akhtar N, Glasgow LA, et al. Quality of online information about irritable bowel syndrome. Pract Gastroenterol. 2020;44:14–23.

Caled D, Silva MJ. Digital media and misinformation: an outlook on multidisciplinary strategies against manipulation. J Comput Soc Sci. 2022;5:123–59.

Altamimi I, Khan SA, Alhemsi H, et al. Exploring online health resources and self-care among irritable bowel syndrome patients: analyzing internet use and AI chatbot interactions. Mhealth. 2024;10:28.

Sivarajkumar S, Kelley M, Samolyk-Mazzanti A, Visweswaran S, Wang Y. An empirical evaluation of prompting strategies for large language models in zero-shot clinical natural language processing: algorithm development and validation study. JMIR Med Inform. 2024;12: e55318.

Daza J, Bezerra LS, Santamaría L, et al. Evaluation of four chatbots in autoimmune liver disease: a comparative analysis. Ann Hepatol. 2025;30: 101537.

Article  PubMed  Google Scholar 

McMahon AK, Terry RS, Ito WE, Molina WR, Whiles BB. Battle of the bots: a comparative analysis of ChatGPT and bing AI for kidney stone-related questions. World J Urol. 2024;42:600.

Carl N, Schramm F, Haggenmüller S, et al. Large language model use in clinical oncology. NPJ Precis Oncol. 2024;8:240.

Anstey C, Ullman D, Su L, et al. The practical use of artificial intelligence in transfusion medicine and apheresis. Transfus Apher Sci. 2024;63: 104001.

Article  PubMed  Google Scholar 

Cao JJ, Kwon DH, Ghaziani TT, et al. Large language models’ responses to liver cancer surveillance, diagnosis, and management questions: accuracy, reliability, readability. Abdom Radiol (NY). 2024;49:4286–94.

Cil G, Dogan K. The efficacy of artificial intelligence in urology: a detailed analysis of kidney stone-related queries. World J Urol. 2024;42:158.

OpenAI. Introducing ChatGPT [Internet]. [cited 2024 December 1]. https://openai.com/index/chatgpt/

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [Internet]. arXiv; 2023 [cited 2024 December 1]. http://arxiv.org/abs/1706.03762

Kerbage A, Kassab J, El Dahdah J, Burke CA, Achkar JP, Rouphael C. Accuracy of ChatGPT in common gastrointestinal diseases: impact for patients and providers. Clin Gastroenterol Hepatol. 2024;22:1323-5.e3.

Sciberras M, Farrugia Y, Gordon H, et al. Accuracy of information given by chatgpt for patients with inflammatory bowel disease in relation to ECCO guidelines. J Crohns Colitis. 2024;18:1215–21.

Article  PubMed  Google Scholar 

Srinivasan N, Samaan JS, Rajeev ND, Kanu MU, Yeo YH, Samakar K. Large language models and bariatric surgery patient education: a comparative readability analysis of GPT-3.5, GPT-4, bard, and online institutional resources. Surg Endosc. 2024;38:2522–32.

McInnes N, Haglund BJA. Readability of online health information: implications for health literacy. Inform Health Soc Care. 2011;36:173–89.

Article  PubMed  Google Scholar 

Krist AH, Tong ST, Aycock RA, Longo DR. Engaging patients in decision-making and behavior change to promote prevention. Stud Health Technol Inform. 2017;240:284–302.

Aydin S, Karabacak M, Vlachos V, Margetis K. Large language models in patient education: a scoping review of applications in medicine. Front Med. 2024;11:1477898.

Gibney S, Bruton L, Ryan C, Doyle G, Rowlands G. Increasing health literacy may reduce health inequalities: evidence from a national population survey in Ireland. Int J Environ Res Public Health. 2020;17:5891.

Welivita A, Pu P, et al. Are large language models more empathetic than humans? [Internet]. arXiv; 2024 [cited 2024 December 1]. http://arxiv.org/abs/2406.05063

Comments (0)

No login
gif