Fatty acyl-coenzyme A activates mitochondrial division through oligomerization of MiD49 and MiD51

Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 15, 235–259 (2020).

Article  CAS  Google Scholar 

Kraus, F., Roy, K., Pucadyil, T. J. & Ryan, M. T. Function and regulation of the divisome for mitochondrial fission. Nature 590, 57–66 (2021). vol.

Article  CAS  PubMed  Google Scholar 

Ngo, J. et al. Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl‐CoA. EMBO J. https://doi.org/10.15252/embj.2022111901 (2023).

Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

König, T. et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat. Cell Biol. 23, 1271–1286 (2021).

Article  PubMed  Google Scholar 

Fröhlich, C. et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J. 32, 1280–1292 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Koirala, S. et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl Acad. Sci. USA 110, 1342–1351 (2013).

Article  Google Scholar 

Bui, H. T. & Shaw, J. M. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr. Biol. 23, 891–899 (2013).

Article  Google Scholar 

Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Shen, Q. et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25, 145–159 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Palmer, C. S. et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, J. et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30, 2762–2778 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmer, C. S. et al. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288, 27584–27593 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. https://doi.org/10.1242/jcs.169136 (2015).

Richter, V. et al. Structural and functional analysis of mid51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. https://doi.org/10.1083/jcb.201311014 (2014).

Losón, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367–377 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Losõn, O. C. et al. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci. https://doi.org/10.1002/pro.2629 (2015).

Clinton, R. W., Francy, C. A., Ramachandran, R., Qi, X. & Mears, J. A. Dynamin-related protein 1 oligomerization in solution impairs functional interactions with membrane-anchored mitochondrial fission factor. J. Biol. Chem. 291, 478–492 (2016).

Article  CAS  PubMed  Google Scholar 

Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 1–15 (2018).

Article  Google Scholar 

Liu, A., Kage, F. & Higgs, H. N. Mff oligomerization is required for Drp1 activation and synergy with actin filaments during mitochondrial division. Mol. Biol. Cell 32, ar5 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, W. K., Hatch, A. L., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4, e11553 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Hatch, A. L., Ji, W. K., Merrill, R. A., Strack, S. & Higgs, H. N. Actin flaments as dynamic reservoirs for Drp1 recruitment. Mol. Biol. Cell 27, 3109–3121 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

Article  CAS  PubMed  Google Scholar 

Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. A. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 78, 23–44 (2016).

Article  CAS  PubMed  Google Scholar 

Gonzalez-Baro, M. R. & Coleman, R. A. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 49–55 (2017).

Article  CAS  PubMed  Google Scholar 

Irifune, H. et al. GPAM mediated lysophosphatidic acid synthesis regulates mitochondrial dynamics in acute myeloid leukemia. Cancer Sci. 114, 3247–3258 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantinides, P. P. & Steim, J. M. Physical properties of fatty acyl-CoA. Critical micelle concentrations and micellar size and shape. J. Biol. Chem. 260, 7573–7580 (1985).

Article  CAS  PubMed  Google Scholar 

Tranchant, T. et al. Long-term supplementation of culture medium with essential fatty acids alters α-linolenic acid uptake in Caco-2 clone TC7. Can. J. Physiol. Pharmacol. 76, 621–629 (1998).

CAS  PubMed  Google Scholar 

Yang, X., Ma, Y., Li, N., Cai, H. & Bartlett, M. G. Development of a method for the determination of acyl-CoA compounds by liquid chromatography mass spectrometry to probe the metabolism of fatty acids. Anal. Chem. 89, 813–821 (2017).

Article  CAS  PubMed  Google Scholar 

Davda, D. et al. Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem. Biol. 8, 1912–1917 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinkosky, S. L. et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat. Metab. 2, 873–881 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noel, R. J., Antinozzi, P. A., McGarry, J. D. & Newgard, C. B. Engineering of glycerol-stimulated insulin secretion in islet β cells. Differential metabolic fates of glucose and glycerol provide insight into mechanisms of stimulus-secretion coupling. J. Biol. Chem. 272, 18621–18627 (1997).

Article  CAS  PubMed  Google Scholar 

Kalia, R. et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558, 401–405 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif